
Uniproces:
Developing applications that comply with the EU GDPR

by technical means

2018-11-18, Pre-GOTO Conference CPH Meetup @ Trifork

https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 2 / 59

Overview

● About me (very shortly)

● Background: EU General Data Protection Regulation

– Why Haskell?

● The Concept of Uniprocess

● Note: Slides are released under the CC BY-SA license

– Creative Commons Attribution-ShareAlike (“copyleft”)

https://creativecommons.org/licenses/by-sa/4.0/

2018-11-18 3 / 59

About me (very shortly)

● Ramón Soto Mathiesen (Spaniard + Dane)

● MSc. Computer Science DIKU/Pisa and minors in Mathematics HCØ

● CompSci @ SPISE MISU ApS
● “Stay Pure, Isolating Side-Effects” -- Michael Werk Ravnsmed dixit

● “Make Illegal States Unrepresentable” -- Yaron Minsky dixit

– Trying to solve EU GDPR with a scientific approach (Computer Science and Math)

– Mostly Haskell and to a lesser extend Elm

● Member of the Free Software Foundation (FSF) since November 2007

● Founder of Meetup for F#unctional Copenhageners (MF#K) EST. November 2013

● Blog: http://blog.stermon.com/

https://spisemisu.com/
https://www.linkedin.com/in/michaelwerk/
https://blog.janestreet.com/effective-ml-revisited/
http://www.eugdpr.org/
https://www.fsf.org/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://blog.stermon.com/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/

2018-11-18 4 / 59

Matching of expectations

● In this talk I will show how using an alternative
approach to how we “normally” do software, we
can comply with the legislation described in the
General Data Protection Regulation (EU GDPR) from
a technical point of view

● As a side effect, we can easily convince the EU Data
Protection Agencies, that this is the case

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

2018-11-18 5 / 59

Background: EU GDPR
TL;DR (“Too lazy; didn't read")

● EU GDPR (General Data Protection Regulation) came into force 2016-05-24 and is applied
since 2018-05-25

● The fundamental rights of EU citizens, are strengthen by the EU GDPR concerning the
protection of natural persons with regard to the processing of personal data and the free
circulation of these data

● Personal data only includes information relating to natural persons who:

– can be identified or who are identifiable, directly from the information in question

– who can be indirectly identified from that information combined with other information (singled out)

Note: Pseudonymised data can help reduce privacy risks by making it more difficult to
identify individuals, but it is still personal data

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 6 / 59

Background: EU GDPR
(Individual Rights)

● The EU GDPR provides the following rights for individuals:

– The right to be informed

– The right of access

– The right to rectification

– The right to erasure

– The right to restrict processing

– The right to data portability

– The right to object

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 7 / 59

Background: EU GDPR
(Lawful bases for Processing)

● The lawful bases for processing are set out in Article 6 of the EU GDPR. At
least one of these must apply whenever you process personal data:

– Consent

– Contract

– Legal obligation

– Vital interests

– Public task

– Legitimate interests

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 8 / 59

Background: EU GDPR
(Rights vs Processing)

- Right to erasure Right to portability Right to object

Consent ✓ ✓ ✗(*)

Contract ✓ ✓ ✗

Legal obligation ✗ ✗ ✗

Vital interests ✓ ✗ ✗

Public task ✗ ✗ ✓

Legitimate ints. ✓ ✗ ✓

(*) but the right to withdraw consent

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 9 / 59

Background: EU GDPR
(Principles)

● The EU GDPR sets out seven key principles (Article 5):

– Lawfulness, fairness and transparency

– Purpose limitation

– Data minimisation

– Accuracy

– Storage limitation

– Integrity and confidentiality (security)

– Accountability

● These principles should lie at the heart of your approach to processing personal data.

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 10 / 59

Background: EU GDPR
(Fines)

● Failure to comply with the principles (Article 5) may
leave you open to substantial fines. Article 83(5)(a)
states that infringements of the basic principles for
processing personal data are subject to the highest tier
of administrative fines. This could mean a fine of up to
€20 million, or 4% of your total worldwide annual
turnover, whichever is higher.

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 11 / 59

Background: EU GDPR
(Data protection)

● The EU GDPR requires (Article 25) you to put in place appropriate
technical and organisational measures to implement the data
protection principles and safeguard individual rights

● This is “data protection by design and by default”, previously
known as “privacy by design”

● Data protection can help you ensure that you comply with the EU
GDPR’s fundamental principles and requirements, and forms part
of the focus on accountability

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 12 / 59

Background: EU GDPR
(Results since application)

● Point of view as a citizen:

– Visibility in the amount of cookies that must be accepted in
order to visit a web page and disallows access to content until
those cookies are accepted

– I guess we all have received a few emails from companies asking
us if they can use our data, right?

● Have you tried not to give it and to ask that they delete your data, as
stipulated in Article 17: Right of erasure (“the right to be forgotten")?

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 13 / 59

Background: EU GDPR
(Results since application)

● Point of view as a public or private entity:

– There have been quite a few companies that claim to provide
services to help us comply with the EU GDPR

– What is obvious is that very few, if any, provide tools to help us
develop applications that comply with the Regulation

– Law firms provide legal services, at a relatively high price, as usual,
and other consultancies provide a lot of paperwork and words that,
probably, will be “Gone with the Wind"

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 14 / 59

Background: EU GDPR
(Results since application)

● Point of view as a public or private entity:

– Having participated for almost 2 years in an Informal Experience Exchange
Group (ERFA-DPO) organized by the largest IT-union in Denmark (Prosa)

– And going to all kinds of meetings related to the EU GDPR

– What usually happens is that representatives of companies ask for:
technologies, methodologies, libraries, frameworks, ... that could help
them develop applications with a Certificate of Guarantee that comply
with the EU GDPR

https://en.wikipedia.org/wiki/Warranty
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 15 / 59

Background: EU GDPR
(for EU institutions)

● The European Data Protection Supervisor (EDPS) published on 2018-09-14 the
following text on LinkedIn:

– “Today the European Parliament adopted the new Regulation governing data protection in the
EU institutions and bodies, the ‘GDPR for EU institutions’. The new, strengthened rules ensure
that the high standard of data protection within the EU institutions and bodies is in line with the
standard provided for in the GDPR. They reflect the new emphasis on accountability, requiring
the EU institutions to actively demonstrate their compliance with data protection rules and
prioritise practical safeguards for individuals rather than bureaucratic procedures ...”

– In other words (my humble interpretation): “EDPS demands a greater number of practical
solutions, which demonstrates that they comply with the EU GDPR, and less bureaucratic
paperwork"

https://www.linkedin.com/feed/update/urn:li:activity:6445987004969811968
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 16 / 59

Background: EU GDPR
(Guidelines to follow)

LinkedIn Post (Tim Walters, Ph.D.)

https://www.linkedin.com/pulse/why-so-many-smart-people-stupid-gdpr-tim-walters-ph-d-
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 17 / 59

Background: EU GDPR
(Guidelines to follow)

● “One example: The requirement for data minimization (Article
5(1)(c)) means that you must be able to demonstrate that every
business process that touches personal data (and every
technology that contributes to it) is designed in such a way that
it uses the smallest possible amount of data for the shortest
possible period of time while exposing it to the fewest possible
eyeballs and ensuring that it is deleted as quickly as possible
when the processing purpose is completed" -- Tim Walters

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

2018-11-18 18 / 59

Why Haskell
(Concepts and definition)

● Firstly, I will talk about the basic concepts of Haskell, without
going too far into the theoretical details, to make sure that we
are all on the same pace

● Haskell is a standardized, general-purpose, purely functional
programming language with non-strict semantics and strong
static typing

● Haskell is widely used in the academia but also in the industry

https://www.haskell.org/

2018-11-18 19 / 59

Why Haskell
(Purity vs Effects)

● In Haskell there is a clear separation, which is enforced by the type system and the
compiler, between pure code: it is always evaluated with the same output value given
the same input and does not cause any side effects such as mutation of mutable objects
or output to I/O devices; and code that produces effects:

Note: All Haskell applications have a parental code branch with input and output I/O
effects. If this were not the case, we could not provide inputs or see the output of the
calculations and, therefore, it would be a waste of time to execute any application

Parent calls child Parent with effects Parent pure

Child with effects ✓Code with effects ✗Compiler error

Child pure ✓Code with effects ✓Pure code

https://www.haskell.org/

2018-11-18 20 / 59

Why Haskell
(Purity vs Effects)

https://xkcd.com/1312/
https://www.haskell.org/

2018-11-18 21 / 59

Why Haskell
(Purity vs Effects)

● In some cases, to increase performance, this clear separation can
somehow be avoided with referential transparency. For example:

λ> import System.IO.Unsafe
λ> reftrans = unsafePerformIO $ pure =<< getChar
λ> :t reftrans
λ> reftrans :: Char -- No trace of effects in the signature !!!

● When this happens, we can no longer see the side-effects in the
function signatures and the type system and compiler, can’t no longer
help us

https://en.wikipedia.org/wiki/Referential_transparency
https://www.haskell.org/

2018-11-18 22 / 59

Why Haskell
(Purity vs Effects)

● To ensure that undesired side-effects can’t be hidden under
referential transparency, you must add the following pragma at
the start of all the files, in an ad hoc manner, and thus avoid the
launching of the missiles as Simon Peyton Jones usually says:

{-# LANGUAGE Safe #-}

● Instead of using ad-hoc pragmas use compiler flags (preferable):
… -XSafe -fpackage-trust -trust=base …

https://en.wikipedia.org/wiki/Referential_transparency
https://wiki.haskell.org/Safe_Haskell
https://www.youtube.com/watch?v=06x8Wf2r2Mc&t=1247
https://www.microsoft.com/en-us/research/people/simonpj/

2018-11-18 23 / 59

Why Haskell
(Isolation and granulation)

● As mentioned in the previous section, all Haskell applications have a
parental code branch with I/O effects. This is what allows us to create
all kinds of applications (equivalence with Turing complete languages)

● Now, it’s not always the case that if a branch of the code is allowed
to have side effects, these should be all the possible side effects

● For example: We want to send confidential data to a database, but we
do not want our subcontractor, who manages that part of the code, to
send such sensitive information to their own servers

https://www.haskell.org/

2018-11-18 24 / 59

Why Haskell
(Isolation and granulation)

ssh-decorator (Python package) leaks your SSH data

https://www.haskell.org/

2018-11-18 25 / 59

Why Haskell
(Isolation and granulation)

Twitter and GitHub logs your passwords in clear text

https://www.haskell.org/

2018-11-18 26 / 59

Why Haskell
(Isolation and granulation)

●

Cybersecurity now a days, just consist in stemming the tide of the unavoidable !!!

https://www.haskell.org/
https://www.theverge.com/2016/5/5/11592622/this-is-fine-meme-comic

2018-11-18 27 / 59

Why Haskell
(Isolation and granulation)

●

Cybersecurity now a days, just consist in stemming the tide of the unavoidable !!!

https://www.haskell.org/
https://www.theverge.com/2016/5/5/11592622/this-is-fine-meme-comic

2018-11-18 28 / 59

Why Haskell
(Isolation and granulation)

●

Cybersecurity now a days, just consist in stemming the tide of the unavoidable !!!

https://www.haskell.org/

2018-11-18 29 / 59

Why Haskell
(Isolation and granulation)

● In Haskell, the bridge that is responsible for binding the pure code in
combination the with code containing effects, is called monads

● Monads are structures that represent calculations defined as a
sequence of steps.

● Formally, all instances of the monad class must obey the three laws of
monads:

- Left identity : pure a >>= f ≡ f a
- Right identity : m >>= pure ≡ m
- Asociatividad : (m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)

https://wiki.haskell.org/Monad_laws
https://www.haskell.org/

2018-11-18 30 / 59

Why Haskell
(Isolation and granulation)

● As mentioned earlier, this bridge that is responsible for binding the
pure code with the code with effects, can do so gradually allowing
us to make sure that if we only allow a part of the code to access the
network, it can only do that side-effect

● For example: We want to ensure (by design) that our application
only accesses the content of a specific page in the network (effect)
where that content should be displayed on the output device of the
console (another effect) adding date and time stamps (third effect)

https://www.haskell.org/

2018-11-18 31 / 59

Why Haskell
(Isolation and granulation)

granulated -- Granulation of effects
 ::
 (Effects.ConsoleOutM m
 , Effects.DateTimeM m
 , Effects.SpecificWebsiteM m
)
 => m ()

main -- Signature of the main entrance of the application
 :: IO ()

...

main =
 -- By binding the main function with our granulated function, the
 -- application, is automatically isolated to the designated effects
 granulated

https://www.haskell.org/

2018-11-18 32 / 59

Why Haskell
(Isolation and granulation)

-- DESIGN OF EFFECTS (no implementation details)

class Monad m => ConsoleOutM m where
 putStrLn' :: String -> m ()

class Monad m => DateTimeM m where
 getCurrentTime' :: m UTCTime
 getCurrentDate :: m (Integer,Int,Int)

class Monad m => SpecificWebsiteM m where
 parseRequest' :: String -> m Request
 httpLbs' :: Request -> Manager -> m (Response L8.ByteString)
 httpNoBody' :: Request -> Manager -> m (Response ())
 tlsManager :: m Manager

https://www.haskell.org/

2018-11-18 33 / 59

Why Haskell
(Isolation and granulation)

-- IMPLEMENTATION OF EFFECTS

instance ConsoleOutM IO where
 putStrLn'
 = putStrLn

instance DateTimeM IO where
 getCurrentTime'
 = getCurrentTime

 getCurrentDate
 = toGregorian . utctDay <$> getCurrentTime

instance SpecificWebsiteM IO where
 parseRequest' relativeUrl =
 parseRequest $ Domain.uri ++ relativeUrl

...

uri =
 "https://specificwebiste.com"

https://www.haskell.org/

2018-11-18 34 / 59

Why Haskell
(Isolation and granulation)

All effects (I/O) vs Granulated (Output to the Console Time and Date Specific Page)∪ ∪

All the possible
effects of I/O

SP

DT

OC

https://www.haskell.org/

2018-11-18 35 / 59

Why Haskell
(Isolation and granulation)

● Therefore, it is very easy to ensure that the design
and architecture will be applied throughout the
entire application

● It will also be easy to see for the experts, maybe
even for the users, that the application really does
what it was designed to do

https://www.haskell.org/

2018-11-18 36 / 59

Why Haskell
(Isolation and granulation)

● And if someone tries to modify the application, with bad intentions,
it will require major changes in the design and architecture, which
can be easily spotted.

● Talking about how to do things the right way and thus ensure “data
protection by design and default"

Note: And the best thing is that you don’t have to believe in my
word, you just have to trust a piece of technology that is based on
solid foundations of Mathematics and Computer Science

https://www.haskell.org/

2018-11-18 37 / 59

Why Haskell
(Guidelines to follow)

● “One example: The requirement for data minimization (Article
5(1)(c)) means that you must be able to demonstrate that every
business process that touches personal data (and every
technology that contributes to it) is designed in such a way that
it uses the smallest possible amount of data for the shortest
possible period of time while exposing it to the fewest possible
eyeballs and ensuring that it is deleted as quickly as possible
when the processing purpose is completed" -- Tim Walters

https://www.haskell.org/

2018-11-18 38 / 59

Why Haskell
(Lets recap)

● It seems that Haskell + EU GDPR is a:

– “Match made in heaven"

● But as the old saying goes:

– “All that glitters is not gold” ...

https://www.haskell.org/

2018-11-18 39 / 59

Concept of Uniprocess
(Referential transparency)

● ... speaking from experience, the majority of those who use Haskell, don’t
usually give too much importance to the referential transparency , because if they
can use an escape route to bypass the strict rules of the language, they will

– Quoting Bill Gates: “I choose a lazy person to do a hard job. Because a lazy person will find
an easy way to do it”

● This can have consequences if the compiler flags that do not allow referential
transparency are used at project level:

… -XSafe -fpackage-trust -trust=base …

● in the way that some Haskell packages can’t be used

– Data.Text can’t be marked as a trustedworthy, while Data.ByteString can

https://en.wikipedia.org/wiki/Referential_transparency
https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 40 / 59

Concept of Uniprocess
(Definition and guarantees)

● This is where the concept of uniprocess comes into play, and is
defined as:

– “A stateless piece of software that encapsulates a process, seen from a
business perspective, of which it is known at all times what data enter
and what data comes out of the process"

● To ensure this statement, it is necessary that all code used, can
be marked as a safe with the previously mentioned compiler
flags

https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 41 / 59

Concept of Uniprocess
(Definition and guarantees)

● In addition, we also want to provide the possibility to exclude
packages that can’t be registered as trustedworthy

● This is achieved by introducing the concept of restricted effects, as
described in the article [Safe {H}askel], to make sure that only a
minimum number of effects can be used

● [Safe{H}askel]: (David Terei, David Mazières, Simon Marlow, Simon
Peyton Jones) Haskell ’12: Proceedings of the Fifth ACM SIGPLAN
Symposium on Haskell, Copenhagen, Denmark, ACM, 2012

https://simonmar.github.io/bib/safe-haskell-2012_abstract.html
https://simonmar.github.io/bib/safe-haskell-2012_abstract.html
https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 42 / 59

Concept of Uniprocess
(Basics: Effect isolation)

● Restriction of effects: Only specific effects are allowed in a
uniprocess:

– Write to the console. For maintenance purposes

– Date and time. For the purpose of timestamps

– Random values generated by the operating system. For the
generation of unique identifiers and data anonymization

– Secure network communication. All communication with a Uniprocess
must be done over TLS

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 43 / 59

Concept of Uniprocess
(Basics: Effect isolation)

● Granulation of effects: It must be possible to further restrict the
effects of certain branches of the code, recursively, to limit to a
subset of the restricted effects. For example:

– Only the part of the code handling the HTTPS server, is able to output logs
to the console

– We have limited a code branch so it can only retrieve data the following
service: https://example.service.com:8443 . Once received, the data can
then be used by some of the other code branches which can’t access the
mentioned service

https://example.service.com:8443/
https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 44 / 59

Effects

R0 - Random + Console + Timestamps + Network

R1 - Random + Timestamps

R10 - Random

R11 - Timestamps

R2 - Console + Network

R20 - Console

R21 - Network

R210 - Receive from foo.com

R210 - Send to bar.com

Concept of Uniprocess
(Basics: Effect isolation)

https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 45 / 59

Concept of Uniprocess
(Basics: Effect isolation)

● Thanks to the isolation of effects, it would be enough
for companies to design the effects layers and
outsource the development to anyone (*) with the
necessary knowledge, knowing that the code they
receive will comply 100% with their initial design

(*) - even the best black-hat hackers

https://en.wikipedia.org/wiki/Black_hat
https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 46 / 59

Concept of Uniprocess
(Basics: Reproducible builds)

Galician veal roaming the mountains. Best meat in Spain, certified by a quality/warranty seal

http://www.terneragallega.com/
http://www.campogalego.com/carne/ganderia-fonchave-diversificacion-na-montana-lucense/

2018-11-18 47 / 59

Concept of Uniprocess
(Basics: Reproducible builds)

● Code compiled with Haskell will always produce the same bits, because the
compiler is deterministic

● If a secure hash is applied to these binaries, in this case SHA-256, we can create what is
called a reproducible build hash. For example:

– 28066d57da7328899c853a3f6c9ebc1bc7e0fa1a0ce0e9bf05de9c796911aa93 (64 hex number)

● This hexadecimal number, could be denominated as a warranty seal, since it certifies that a
specific code will always produce the same binary

● As there is a link between code and binaries, this will allow the relevant authorities to
testify that the application that is currently being executed comes from the source code
and, in addition, to easily perform trustworthy audits to verify that the applications, really
do what they were designed to do

https://en.wikipedia.org/wiki/Deterministic_compilation
https://es.wikipedia.org/wiki/SHA-2
http://www.terneragallega.com/

2018-11-18 48 / 59

Concept of Uniprocess
(Basics: Reproducible builds)

● When using Docker technology for the distribution of binaries, as it is a technology that
does not give the same importance to determinism when it comes to recreating images or
containers, it has been necessary to create algorithms that are capable of producing
reproducible build hashes for both of images and containers, and therefore safeguard
the guarantees offered by the use of Haskell

● The reason for the use of Docker, is that it allows to use base containers of a much
smaller size if we compare it to a standard operating system. The base container used is
fpco/haskell-scratch:integer-gmp of only 2 MB in size, producing container images of
about 7.5 - 15 MB

● And since the base container only includes Linux components to run Haskell
applications, this will minimize the attack surface for hackers

https://www.docker.com/
https://www.docker.com/
https://hub.docker.com/r/fpco/haskell-scratch/tags/
https://www.docker.com/

2018-11-18 49 / 59

Concept of Uniprocess
(Basics: Reproducible builds)

Safety in Numbers of 256-bit security

https://en.wikipedia.org/wiki/Safety_in_numbers
http://www.terneragallega.com/
https://www.youtube.com/watch?v=S9JGmA5_unY

2018-11-18 50 / 59

Concept of Uniprocess
(Basics: Communication)

● Incoming
– HTTPS server: A uniprocess will run a lightweight HTTPS server, that will only

respond to GET and POST requests. Connections aren’t held alive as once a request is
served, the server will close the connection afterwards

– Secure WebSocket server: The only way to keep a connection alive with a uniprocess,
is if the client provides an Upgrade header to the server so the HTTPS connection will
be replaced by a Secure WebSocket

● Outgoing
– HTTPS client: Only GET and POST are the only supported request. The header

Connection: close is always added to these request

– Secure WebSocket client: The WebSocket Upgrade header is supported as well

https://en.wikipedia.org/wiki/HTTP/1.1_Upgrade_header
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/HTTP/1.1_Upgrade_header
https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 51 / 59

Concept of Uniprocess
(Basics: Communication)

● Security
– TLS: A uniprocess can only communicate over the

Transport Layer Security, more specifically, the version
1.2. This will ensure that all message exchange between
the uniprocess and other services, is secured by design
and default

https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 52 / 59

Concept of Uniprocess
(Basics: Communication)

● Data
– Both the HTTP and WebSocket server/client are limited to

send/receive data in JSON format, which means that it is the only
supported format

– Consistency and correctness: can be enforced by using
parser-combinators, which will allows us to ensure that, for
example, a name shouldn’t contain a number “John 42 Doe"
(possible data-leak)

https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Parser_combinator
https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 53 / 59

Concept of Uniprocess
(Basics: Documentation)

● The ideal scenario is that the documentation is derived directly
from the side-effects as well as a graphical representation,
sunburst diagram

● This would allow the semantics of the process to be kept hidden
and thus respect the intellectual property (IP) of the companies

● As a result, by having a direct link between the code and the
documentation, it would ease audits and make them trustworthy

https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 54 / 59

Concept of Uniprocess
(Open Source Software)

● To ensure that companies can safeguard their intellectual
property (IP), We have chosen LGPL-3.0 as it is a permissive
copyleft license, that will allow you to build on the provided
solution but letting you decide if your work is going to get released
under another license, open source or not

● For more information on the template, please look into the source
code which can be found at:

– Uniprocess Template @ GitLab

https://www.gnu.org/licenses/lgpl-3.0.html
https://copyleft.org/
https://gitlab.com/uniprocess/haskell-template/
https://opensource.org/

2018-11-18 55 / 59

Concept of Uniprocess
(Released in)λ

● In this initial release, both the the λ WebSocket
client and server, don’t have the necessary quality,
therefore they are excluded and will be released
soon

Note: I actually forgot to implement support for
POST requests (working on that at the moment)

https://en.wikipedia.org/wiki/WebSocket
https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 56 / 59

Concept of Uniprocess
(Recapping with an analogy)

● In Denmark it is allowed to drive scooters on the bike lane

● A requirement is that the speed limit does not exceed 45 km/h for the scooters

● All companies that sell scooters in Denmark limit the engine to ensure that they
do not exceed that speed (technical measure)

● If this were not the case, the Danish authorities could fine, very heavily, brands
that don’t comply with the law

● For officials, in this case the police, it is very easy to inspect if the scooter
complies with the law or not, since they have in the trunk of their vehicles a
speedometer (another technical measure)

https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 57 / 59

Concept of Uniprocess
(Recapping with an analogy)

● And this is where the concept of uniprocess enter the scene. Using this
concept, we can help brands ensure that their applications do not exceed
the speed limit while providing tools to the relevant authorities to
ensure that the law is followed

● Being software development and scooters two totally different
domains you could say: “That's OK, but if I as a user, buy a scooter and
make changes to the engine". Unlike with scooters, we can exclude this
possibility totally thanks to the Haskell monads !!! (the main reason why
this concept is so valuable)

https://www.meetup.com/GOTO-Nights-CPH/

2018-11-18 58 / 59

Summary

● The European Data Protection Supervisor (EDPS): “demands a greater number of practical
solutions, which demonstrates that they comply with the EU GDPR, and less bureaucratic paperwork"

● In order to solve the EU GDPR, from a technical point of view, Haskell isn’t enough, we need
something more

● The concept of uniprocess tries to facilitate, through a Haskell template (Open Source), a
methodology to design and develop applications with “data protection by design and by default"
and allowing, with a seal of quality, the relevant authorities to corroborate that this is the case
even when subcontracting the development to unreliable individuals or companies

● As when we encrypt data, performance decreases. The same happens when use SAFE code in
Haskell. That must be taken into account when designing applications. You can obtain greater
performance by delegating tasks with anonymous data to later collect the calculations and present
them to the end user but always keeping in mind: Correctness + security performance≫

Note: The notacion , reads ≫ much greater than

https://en.wikipedia.org/wiki/Inequality_(mathematics)

2018-11-18 59 / 59

Q & A

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

