
Intro Course in Haskell
Reliable, adj: To deliver the same result every time

2018-08-08, PROSA (ADA) @ Copenhagen

2018-08-08 2 / 74

Overview

● About me (very shortly)

● Matching of expectation

● Program

● Summary

Note: Slides are released under the CC BY-SA license

– Creative Commons Attribution-ShareAlike (“copyleft”)

https://creativecommons.org/licenses/by-sa/4.0/

2018-08-08 3 / 74

About me (very shortly)

● Ramón Soto Mathiesen (Spaniard + Dane)

● MSc. Computer Science DIKU/Pisa and minors in Mathematics HCØ
● CompSci @ SPISE MISU ApS

● “Stay Pure, Isolating Side-Effects” -- Michael Werk Ravnsmed dixit
● “Make Illegal States Unrepresentable” -- Yaron Minsky dixit

– Trying to solve EU GDPR from a scientific approach (Computer Science and Math)

– Elm (JS due to ports) but mostly Haskell

● Haskell / Elm / TypeScript / F# / OCaml / Lisp / C++ / C# / JavaScript

● Member of the Free Software Foundation (FSF) since November 2007

● Founder of Meetup for F#unctional Copenhageners (MF#K)

● Blog: http://blog.stermon.com/

https://spisemisu.com/
https://www.linkedin.com/in/michaelwerk/
https://blog.janestreet.com/effective-ml-revisited/
http://www.eugdpr.org/
https://www.fsf.org/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://blog.stermon.com/

2018-08-08 4 / 74

Matching of expectations

● What are your expectations for this course?

2018-08-08 5 / 74

Matching of expectations

● We expect the attendees to be able to:

– Understand a few basic concepts:
● GHCI, develop faster by using a REPL

● Syntax and readability

● Lazy vs eager (strict)

● Algebraic Data Types (sum and product)

● Type-classes

● Purity vs effects

– Make production-ready scripts, applications and packages (stack)

2018-08-08 6 / 74

Program

● A few basic concepts to get started
● The Haskell Tool Stack (scripts, applications and packages)

● Domain modeling with Types

● A few high-order functions that will be used again and again

● Testing with Hspec and QuickCheck

● Profiling to avoid stack overflows and space leaks

● Safe applications and packages

● Isolating and granulating side-effects

2018-08-08 7 / 74

Basics: Haskell

● The Haskell is a standardized, general-purpose compiled purely
functional programming language, with non-strict semantics and
strong static typing.

● It is named after logician Haskell Curry

● Haskell features a type system with type inference and lazy evaluation.
Type-classes first appeared in the Haskell programming language. Its
main implementation is the Glasgow Haskell Compiler (GHC).

● Haskell is used widely in academia and industry.

Source: Wikipedia

https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://www.haskell.org/

2018-08-08 8 / 74

Basics: GHCI (REPL)

● Glasgow Haskell Compiler Interactive environment:
user@personal:~$ ghci
GHCi, version 8.4.3: http://www.haskell.org/ghc/ :? for help
Prelude> ['a'] ++ ['b'] ++ ['c'] -- Combining 3 Char lists
“abc” -- String type in Haskell is just an alias for: type String = [Char]
Prelude> :t (++) -- Type signature of a value (abbreviation of :type)
(++) :: [a] -> [a] -> [a]
Prelude> :i Char -- Information of a type (abbreviation of :info)
data Char = GHC.Types.C# GHC.Prim.Char# -- Defined in ‘GHC.Types’
instance Eq Char -- Defined in ‘GHC.Classes’
instance Ord Char -- Defined in ‘GHC.Classes’
instance Show Char -- Defined in ‘GHC.Show’
instance Read Char -- Defined in ‘GHC.Read’
instance Enum Char -- Defined in ‘GHC.Enum’
instance Bounded Char -- Defined in ‘GHC.Enum’

Note: REPL = Read, Evaluate, Print and Loop (interpreted code)

https://wiki.haskell.org/GHC/GHCi
https://www.haskell.org/

2018-08-08 9 / 74

Basics: Syntax

● Example:
ones :: Num a => [a]
ones = 1 : ones -- Infinite sequence of 1’s

twos :: Num a => [a]
twos = map (+ 1) ones -- Infinite sequence of 2’s

pair :: (Num a, Num b) => [(a, b)]
pair = zip ones twos -- Infinite sequence of (1,2)’s

mapM_ (putStr . show) $ take 5 pair
(1,2)(1,2)(1,2)(1,2)(1,2)

https://www.haskell.org/

2018-08-08 10 / 74

Basics: Syntax

● Signatures

– nameid :: signature: The (::) token is used to bind a nameid to it’s
signature.

– foo :: (Ord a) => a: The (=>) token is used to define the expected context
for a given polymorphic type. In this case, we expect that a can ordered (sorted).

– bar :: (a -> b) -> a -> b: The (->) tokens are used to specify arguments.
In this case, the first argument of bar is a function taking an a and returning a b.
The function bar, takes the mentioned function, then a value of type a and
finally returning the evaluation of the function on a, which will result on a value
of type b.

Note: The return type of a function is always the right side of the the last (->).

https://www.haskell.org/

2018-08-08 11 / 74

Basics: Syntax

● Implementation details:

– ones = 1 : ones: The (:) operator, lazily prepends 1 to the recursive list ones. No evaluation,
only when needed.

– map (+ 1) ones: Predominate usage of higher-order-functions (passing functions as
arguments). Notice that (+ 1) is equivalent to \x -> x + 1 (lambda). Still, no evaluation, even
though the (+) is eager (strict).

– mapM_ (putStr . show) $ take 5 pair: (reads from right to left) The function take only
retrieve five elements from the infinite sequence of (1,2) pairs. Each of these pairs (mapM_) are
converted to a string and then printed to the console. This is achieved by the composition of (show)
and (putStr). Only 5 elements are evaluated from the infinite lists on which the operations (+ 1,
show, putStr) are performed on.

Note: Functions tend to use curried arguments \x y -> x + y instead of
\(x,y) -> x + y and $ in f 42 $ g 42 is equivalent to f 42 (g 42)

https://www.haskell.org/

2018-08-08 12 / 74

Basics: Readability

● Expressions vs do-notation (both read from right to left and top-down)
– Expression:

foo :: IO String
foo =
 -- (=<<) Lifts impure values (IO) into purity
 pure . show . length . words =<< getLine

– Equivalent code with do-notation:

bar :: IO String
bar = do
 input <- getLine -- (<-) Lifts impure values (IO) into purity
 let count = length $ words $ input
 return $ show $ count

● Both are valid ways to write Haskell code. Don't let anyone tell you different !!! (there
are way to many pedantic c**ts out there)

https://www.haskell.org/

2018-08-08 13 / 74

Basics: ADT
(Algebraic Data Types)

● Product types: Think of it as tuples (pair, triple, ...):
(42,‘c’) or (42, ‘c’, “c”)

– Record syntax in Haskell is written like:
-- Curried approach differs from ML tuples
data FooBar = FooBar Integer Char

– or equivalent, with built-in auxiliary functions of type
(FooBar -> a) for each field a:

data FooBar’ = FooBar’ { foo :: Integer, bar :: Char }
42 == (foo $ FooBar 42 ‘x’)

https://www.haskell.org/

2018-08-08 14 / 74

Basics: ADT
(Algebraic Data Types)

● Sum types (also know as discriminated unions):
Think of it as disjoint sets (have no element in
common). The element must be in one of the
assigned disjoint sets:

– A person is either a child or an adult:
data Person = Child | Adult

– Temperature is measured Celsius or Fahrenheit:
data Temperature = C Double | F Integer

https://www.haskell.org/

2018-08-08 15 / 74

Basics: ADT
(Algebraic Data Types)

● With ADT you will be able to compose simpler types
together in order to create more complex datastructures:

data Football = Football Boots Ball

data Dota2 = Dota2 Computer Software

data Sport = Classic Football | Esport Dota2

– This is ideal for domain modeling (T/DDD) as it allows you to
use these mathematically constraints to
“Make Illegal States Unrepresentable” -- Yaron Minsky

https://blog.janestreet.com/effective-ml-revisited/
https://twitter.com/@yminsky
https://www.haskell.org/

2018-08-08 16 / 74

Basics: ADT
(Algebraic Data Types)

● ADT allows you to pattern match on all branches:
data FooBar = FooBar { foo :: Integer, bar :: Double }
isFoo42 :: FooBar -> Bool
isFoo42 fb
 | 42 == foo fb = True
 | otherwise = False

data Person = Child | Adult
assertAge :: Integer -> Person -> Bool
assertAge age p =
 case p of
 Child -> age < 18
 Adult -> age >= 18

Note: For exhaustive pattern match, use the following compiler flags:
ghc -Wall -Werror -O2 --make Main.hs -o foobar

https://www.haskell.org/

2018-08-08 17 / 74

Basics: Tasks

● Tasks 00:

– a) Implement a tool that reverses input:
● Example: echo -n “Some Text” | ./reverse

● Hint: Prelude.interact

– b) Implement a data type containing a person’s names (first and last)
● Example: Name “John” “Doe”

● Hint: ADT (records)

Note: Hoogle is really good to find already implemented logic:

– Search for the following signature: [a] -> [a]

http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html#v:interact
https://www.haskell.org/hoogle/
https://www.haskell.org/hoogle/?hoogle=%5Ba%5D+-%3E+%5Ba%5D
https://www.haskell.org/

2018-08-08 18 / 74

Program

● A few basic concepts to get started

● The Haskell Tool Stack (scripts, applications and packages)
● Domain modeling with Types

● A few high-order functions that will be used again and again

● Testing with Hspec and QuickCheck

● Profiling to avoid stack overflows and space leaks

● Safe applications and packages

● Isolating and granulating side-effects

2018-08-08 19 / 74

Stack
(The Haskell Tool)

● The Haskell Tool Stack is what is making development in Haskell a
pleasant experience.

● Features:

– Installing a specific GHC automatically, in an isolated location (sandbox).

– Installing packages needed for your project.

– Building your project.

– Testing your project.

– Benchmarking your project.

https://docs.haskellstack.org/en/stable/README/
https://www.haskell.org/

2018-08-08 20 / 74

Stack
(The Haskell Tool)

● Getting started by making an executable binary:

– You just need in the root of your folder a file named stack.yaml with the following content:
resolver: lts-12.0

– And then another file named package.yaml with the following content:
executables:
 helloworld:
 main:
 Main.hs
 source-dirs:
 - src
dependencies:
- base # Prelude

– Finally, you can build and execute the binary
user@personal:~/.../helloworld$ stack build && stack exec helloworld

https://www.haskell.org/

2018-08-08 21 / 74

Stack
(The Haskell Tool)

● Sometimes we just want to write a script and therefore wont need all the extra
overhead (stack.yaml and package.yaml files). To make a script, just add the
following on the top of your Main.hs file:

#!/usr/bin/env stack
{- stack
 --resolver lts-12.0
 --install-ghc
 script
 --ghc-options -Werror
 --ghc-options -Wall
 –
-}
module Main (main) where

● And that’s it. You can execute your script like this (after chmod +x src/Main.hs):
user@personal:~/.../helloworld$./src/Main.hs

https://www.haskell.org/

2018-08-08 22 / 74

Stack
(The Haskell Tool)

● And if we want to make a library (package). It’s very similar to making an
executable:

– You just need in the root of your folder a file named stack.yaml with the following
content:
resolver: lts-12.0

– And then another file named package.yaml with the following content:
library:
 source-dirs:
 - src
dependencies:
- base # Prelude

– Finally, you can build the library (package)
user@personal:~/.../helloworld$ stack build

https://www.haskell.org/

2018-08-08 23 / 74

Stack
(The Haskell Tool)

● stack have some built-in templates that can be used to ease the creation
of binaries and packages:

user@personal:$ stack templates
Template Description
chrisdone
foundation - Project based on an alternative ...
franklinchen
...
yesod-postgres
yesod-simple
yesod-sqlite

Note: I personally don’t use them as they are very specific. I prefer to define
my own stack.yaml and package.yaml files

https://www.haskell.org/

2018-08-08 24 / 74

Stack: Tasks

● Tasks 01:

– a) Convert Task.00.a from a binary to a script
● Example: echo -n “Some Text” | ./Main.hs

– b) By using stack templates, create a simple binary project

– c) By using stack templates, create a simple library project

Note: When calling stack for a), b) and c), ensure that you use
the Long-Term Support version 12.0 and if it’s not present at your
system, that it should be downloaded and sanboxed:

user@personal:$ stack --resolver lts-12.0 --install-ghc ...

https://www.stackage.org/lts-12.0
https://www.haskell.org/

2018-08-08 25 / 74

Program

● A few basic concepts to get started

● The Haskell Tool Stack (scripts, applications and packages)

● Domain modeling with Types
● A few high-order functions that will be used again and again

● Testing with Hspec and QuickCheck

● Profiling to avoid stack overflows and space leaks

● Safe applications and packages

● Isolating and granulating side-effects

2018-08-08 26 / 74

TDD
(Type Driven Development)

Domain modeled in an ER-diagram

https://www.haskell.org/

2018-08-08 27 / 74

TDD
(Type Driven Development)

● It’s intuitive to see that I’m not able to make a
booking unless a plane is specified (mandatory)

● Also, I can see that I might book a hotel or rent a car,
but they are not required (optional)

● I don’t think I can get any other information out from
this diagram unless I’m also reading some text

● Which products are they offering?

https://www.haskell.org/

2018-08-08 28 / 74

TDD
(Type Driven Development)

● Domain modeled in Haskell with ADT definitions:
data Booking
 = Basic Plane
 | Combo Combo
 | FullPack Plane Hotel Car
data Combo
 = WithHotel Plane Hotel
 | WithCar Plane Car
data Plane = Plane
 { departure :: UTCTime
 , arrival :: UTCTime
 , destination :: City
 }
newtype Hotel = Hotel { hotel :: String }
newtype Car = Car { car :: String }
newtype City = City { city :: String }

Note: The newtype keyword ensure that we don’t use Hotel where we would use Car or City. This
approach should be used instead of a type alias : type Hotel = String. There will be no performance
penalty as the types are erased at compile-time

https://www.haskell.org/

2018-08-08 29 / 74

TDD
(Type Driven Development)

● I can easily see the 3 product which are offered

– Basic, Combo and Fullpack

● Combo products can be of two types

– “WithHotel” and “WithCar”

https://www.haskell.org/

2018-08-08 30 / 74

TDD
(Type Driven Development)

● I can see some constraints:

– A Booking can either be Basic, Combo or Fullpack (disjoint union)

– With each of these products requirements (tuples):
● Basic: (Plane) single

● Combo: (Plane, Hotel) pair or (Plane, Car) pair

● Fullpack: (Plane, Hotel, Car) triple

– I can also see that a Plane will require the following information (still a tuple):
● Plane: (Departure date and time, Arrival date and time, Destination city)

Note: Domain definition and implementation are still separated when
using this approach

https://www.haskell.org/

2018-08-08 31 / 74

TDD: Tasks

● Tasks 02:

– Implement the domain of a Book, that could be used for a Bookstore or
a Library:

● Types: Audio, electronic and physical

● Formats:
– AAC, MP3, M4B and WAV

– EPUB, MOBI and PDF

– Hardcover and Paperback

● Info:
– Mandatory: title, authors, publisher, language, isbn10 and isbn13

– Optional: pages

https://www.haskell.org/

2018-08-08 32 / 74

Program

● A few basic concepts to get started

● The Haskell Tool Stack (scripts, applications and packages)

● Domain modeling with Types

● A few high-order functions that will be used again and again
● Testing with Hspec and QuickCheck

● Profiling to avoid stack overflows and space leaks

● Safe applications and packages

● Isolating and granulating side-effects

2018-08-08 33 / 74

HOF
(High-Order Functions)

● There are a few built-in functions that you will be using again and again
with many built-in collections (data structures) but also with your own
defined as well.

● We tend to use them with their binary operators:
– fmap or <$>: You apply a function to a value of a type supporting this operation

– liftA or <*>: You apply a lifted function to a lifted value

– liftM or >>=: You apply a function, returning a lifted value, to a lifted value
Note: (=<<) and (>>=) are equivalent, but you will for the most, see the usage of (>>=).

Note: You lift a value with pure. Example:
pure 2 :: [Integer]

https://www.haskell.org/

2018-08-08 34 / 74

HOF
(High-Order Functions)

● Example with Maybe type (Just a / Nothing):
 (+ 1) <$> Just 42
Just (+ 1) <*> Just 42
pure . (+ 1) =<< Just 42

-- All computations produce the same result
Just 43

https://www.haskell.org/

2018-08-08 35 / 74

HOF
(High-Order Functions)

● Example with Lists:
 (+ 1) <$> [42,43]
[(+ 2),(+ 1)] <*> [42,43]
pure . (+ 1) =<< [42,43]

-- <*> applies each function on all elements
[43,44]
[44,45,43,44]
[43,44]

https://www.haskell.org/

2018-08-08 36 / 74

HOF
(High-Order Functions)

● The reason these HOF work with the showed types, is because they
have provided an instance for each of the respective Type-classes:

– <$> (Mappeable):
instance Functor Maybe -- Defined in ‘GHC.Base’

– <*> (Mappeable and liftable):
instance Applicative Maybe -- Defined in ‘GHC.Base’

– >>= (Chainable and liftable):
instance Monad Maybe -- Defined in ‘GHC.Base’

● Type-classes reminds a bit of Interfaces, but differ, among other, as
they allow for implementation details

https://www.haskell.org/

2018-08-08 37 / 74

TC
(Type-classes)

● Example (simple):
-- We create the Odd Type-class
class (Integral a, Eq a) => Odd a where
 isOdd :: a -> Bool -- Signature
 isOdd x = -- Implementation
 x `mod` 2 == 1

Note: We expect the polymorphic type a, to have
instances for both the Integral (number) and the Eq
(equality) Type-classes

https://www.haskell.org/

2018-08-08 38 / 74

TC
(Type-classes)

● Example (a bit more complex):
-- Equivalent to Maybe type
data Result a = OK a | Error deriving Show -- deriving implements a Type-class

instance Functor Result where
 fmap _ Error = Error
 fmap f (OK a) = OK $ f a

instance Applicative Result where
 pure a = OK a
 (<*>) (OK fn) (OK a) = OK $ fn a
 (<*>) _______ ______ = Error

instance Monad Result where
 return = pure
 (>>=) (OK a) f = f a
 (>>=) ______ _ = Error

https://www.haskell.org/

2018-08-08 39 / 74

HOF + TC: Tasks

Tasks 03:

– a) Implement the Cartesian product:
● Example: cartProd [1,2] [3,4] == [(1,3),(1,4),(2,3),(2,4)]

● Hints: (,), (<$>) and (<*>)

– b) Implement the JSON value as a (recursive) data structure
● Provide an instances for the Show Type-class to print out a valid JSON string

instance Show Value where ...

https://en.wikipedia.org/wiki/Cartesian_product
http://hackage.haskell.org/package/ghc-prim-0.5.2.0/docs/GHC-Tuple.html#t:-40--44--41-
http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html#v:-60--36--62-
http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html#v:-60--42--62-
https://www.haskell.org/

2018-08-08 40 / 74

Program

● A few basic concepts to get started

● The Haskell Tool Stack (scripts, applications and packages)

● Domain modeling with Types

● A few high-order functions that will be used again and again

● Testing with Hspec and QuickCheck
● Profiling to avoid stack overflows and space leaks

● Safe applications and packages

● Isolating and granulating side-effects

2018-08-08 41 / 74

Testing
(Hspec and QuickCheck)

● There are two packages that you will need to know in
order to be able to test you Haskell code properly:

– Hspec (Framework + Unit Testing). With this library we will
write the Test Cases and we will be able to define specific
Unit-tests

– QuickCheck (Property-based Testing). While if we combine
Hspec with QuickCheck, we will also be able to test for
some random values based on some properties of our code

http://hspec.github.io/
http://hackage.haskell.org/package/QuickCheck
https://www.haskell.org/

2018-08-08 42 / 74

Testing
(Hspec and QuickCheck)

● Example (Hspec):
import Test.Hspec (describe, hspec, it, shouldBe)

unittests =
 [it "1 times 0 = 0" $ (1 * 0) `shouldBe` 0
 , it "4 times 5 = 20" $ (4 * 5) `shouldBe` 20
]

testCase = hspec $
 do
 describe "Unit Testing" $
 do
 mapM_ id unittests

https://www.haskell.org/

2018-08-08 43 / 74

Testing
(Hspec and QuickCheck)

● Example (Hspec + QuickCheck):
import Test.Hspec (describe, hspec, it)
import Test.QuickCheck (property)

proptests =
 [it " x * y equals y * x " $ property commutative
 , it "(x * y) * z equals x * (y * z)" $ property associative
]
 where
 commutative :: Int -> Int -> Bool
 commutative = \x y -> x * y == y * x
 associative :: Int -> Int -> Int -> Bool
 associative = \x y z -> (x * y) * z == x * (y * z)

propCase = hspec $
 do
 describe "Propety-based Testing" $
 do
 mapM_ id proptests

https://www.haskell.org/

2018-08-08 44 / 74

Testing: Tasks

● Tasks 04:
– a) Write a Unit-test to check if the cartProd function from

Task.03.a works as expected:
● Example:
cartProd [1,2] [3,4] == [(1,3),(1,4),(2,3),(2,4)]

– b) Write a Property-based test to check if the reverse
function from Task.00.a works as expected:

● Example:
(reverse $ reverse “Some Text”) == “Some Text”

https://www.haskell.org/

2018-08-08 45 / 74

Program

● A few basic concepts to get started

● The Haskell Tool Stack (scripts, applications and packages)

● Domain modeling with Types

● A few high-order functions that will be used again and again

● Testing with Hspec and QuickCheck

● Profiling to avoid stack overflows and space leaks
● Safe applications and packages

● Isolating and granulating side-effects

2018-08-08 46 / 74

Profiling
(Stack Overflows + Space Leaks)

● One of the main issues you will encounter when using a functional
programming language, is how to handle memory. It’s not only specific for
FP languages that when you use to much memory, you will get a
stack overflow. There are a few techniques to bypass this problem:

– Usage of accumulators. This approach will easily convert your recursive functions
to tail-recursive functions. Example:

count [] = 0
count (x:xs) = 1 + count xs -- Stackoverflows cos + is strict
count’ [] acc = acc
count’ (x:xs) acc = count xs (acc + 1) -- Accumulators solve the problem

– Continuation-passing style (CPS), is another useful technique, which is a bit out
of the scope of this introductory course.

https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Tail_call
https://en.wikipedia.org/wiki/Continuation-passing_style
https://www.haskell.org/

2018-08-08 47 / 74

Profiling
(Stack Overflows + Space Leaks)

● Because of Haskell’s lazy operations, it’s not always easy to understand
when something will be evaluated, specially with more complex code. This
sometimes produces unexpected behavior that in many cases create
space leaks (higher memory usage than expected)

● To discover these issue, you can built and run your application with the
following flags:

foobar (+ profiling)
ghc -prof -fprof-auto -rtsopts -O2 --make Main.hs -o foobar
run and generate a memory profile
./foobar +RTS -h
create a graph of memory profile
hp2ps -c foo.hp

https://wiki.haskell.org/Space_leak
https://www.haskell.org/

2018-08-08 48 / 74

Profiling
(Stack Overflows + Space Leaks)

Application with a space-leak (allocates +600 MB)

https://www.haskell.org/

2018-08-08 49 / 74

Profiling
(Stack Overflows + Space Leaks)

Same application but with {-# LANGUAGE Strict #-}

https://www.haskell.org/

2018-08-08 50 / 74

Profiling
(Stack Overflows + Space Leaks)

● The language pragma {-# LANGUAGE Strict #-} turns Haskell
from being a lazy-by-default to a strict-by-default language
within a single module.

● As this is always not a desirable behavior, other techniques(*) as:

– (!) and seq: Ensure that lazy parts are evaluated in an ad-hoc manner

can be used, but they are out of scope of this introductory course

● Handling memory in Haskell, is by far the hardest problem !!!

(*) - Have in mind Weak Head Normal Form (WHNF)

https://ghc.haskell.org/trac/ghc/wiki/LanguageStrict
https://ghc.haskell.org/trac/ghc/wiki/StrictPragma
http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html#v:seq
https://wiki.haskell.org/Weak_head_normal_form
https://www.haskell.org/

2018-08-08 51 / 74

Profiling
(Stack Overflows + Space Leaks)

● Example:
reduce _ acc [] = acc
reduce f acc (x:xs) = reduce f (f acc x) xs

reduce' _ acc [] = acc
reduce' f acc (x:xs) = acc' `seq` reduce' f acc' xs
 where acc' = f acc x

reduce'' _ acc [] = acc
reduce'' f acc (x:xs) = reduce'' f acc' xs
 where !acc' = f acc x

main =
 putStrLn $ show $ reduce (+) 0 xs -- space leak when no {-# LANGUAGE Strict #-}
 --putStrLn $ show $ reduce' (+) 0 xs -- no space leak with `seq`
 --putStrLn $ show $ reduce'' (+) 0 xs -- no space leak with `!` (bang)
 where
 xs :: [Integer]
 xs = [1 .. (1 .<. 31 – 1)]

https://www.haskell.org/

2018-08-08 52 / 74

Profiling
(Stack Overflows + Space Leaks)

reduce (+) which has a space-leak (crashes)

https://www.haskell.org/

2018-08-08 53 / 74

Profiling
(Stack Overflows + Space Leaks)

reduce (+) with {-# LANGUAGE Strict #-} on top

https://www.haskell.org/

2018-08-08 54 / 74

Profiling
(Stack Overflows + Space Leaks)

reduce’ (+) no space-leak with seq

https://www.haskell.org/

2018-08-08 55 / 74

Profiling
(Stack Overflows + Space Leaks)

reduce’’ (+) no space-leak with (!) (bang)

https://www.haskell.org/

2018-08-08 56 / 74

Profiling: Tasks

● Tasks 05:

– a) Implement a naive byte counter and profile it:
● Example: cat naive_count | ./naive_count +RTS -h

● Hint: Data.ByteString.Lazy.interact

– b) Add an accumulator to the naive byte counter and profile it:
● Example: cat acc_count | ./acc_count +RTS -h

Note: Generate a graphical visualization for both with

hp2ps -c naive_count.hp and hp2ps -c acc_count.hp

http://hackage.haskell.org/package/bytestring-0.10.8.2/docs/Data-ByteString-Lazy.html#v:interact
https://www.haskell.org/

2018-08-08 57 / 74

Program

● A few basic concepts to get started

● The Haskell Tool Stack (scripts, applications and packages)

● Domain modeling with Types

● A few high-order functions that will be used again and again

● Testing with Hspec and QuickCheck

● Profiling to avoid stack overflows and space leaks

● Safe applications and packages
● Isolating and granulating side-effects

2018-08-08 58 / 74

Safe
(Purity vs effects)

● In Haskell there is a clear separation, which is enforced by the type system and the
compiler, between pure code, always evaluates to the same output value given the same
input and does not cause any side effect such as mutation of mutable objects or output
to I/O devices, and code that does produce effects:

Note: All Haskell applications have a parent code branch with IO effects. If this wasn’t
the case, we wouldn’t be able to provide input or see the output (IO) of the
computation and therefore it would be a waste of time to execute any application

Code branches Parent IO effect Parent Pure

Child IO effect Code with effects Compile error

Child Pure Code with effects Pure code

https://www.haskell.org/

2018-08-08 59 / 74

Safe
(Purity vs effects)

● In some cases, in order to increase performance, this clear
separation can somehow be bypassed with
referential transparency. Example

λ> import System.IO.Unsafe
λ> reftrans = unsafePerformIO $ pure =<< getChar
λ> :t reftrans
λ> reftrans :: Char -- No trace of IO ...

● When this happens, we can’t no longer devise the side-effects in
the signatures and the type system and the compiler will not be
able to help us anymore

https://en.wikipedia.org/wiki/Referential_transparency
https://www.haskell.org/

60 / 74

Safe
(Purity vs effects)

● To ensure that impurity can’t be hidden under
referential transparency, the following must be
added on top of all your files (ad-hoc) and then avoid
“Launching the missiles”:

{-# LANGUAGE Safe #-}

● Or just added as compiler flags (preferable):
… -XSafe -fpackage-trust -trust=base …

https://youtu.be/06x8Wf2r2Mc?t=1247
https://wiki.haskell.org/Safe_Haskell
https://www.haskell.org/

2018-08-08 61 / 74

Safe: Tasks

● Tasks 06:

– a) Import the safe package Data.Time to your script

– b) Import the package Data.Aeson to your script

Note: When executing the scripts, ensure that both have the safe language
pragma or compiler flags. Also, packages are imported to scripts by simple adding:

#!/usr/bin/env stack
{- stack
 --resolver lts-12.0
 --install-ghc
 script
 --package time
 –
-}

http://hackage.haskell.org/package/time-1.9.2/docs/Data-Time.html
http://hackage.haskell.org/package/aeson-1.4.0.0/docs/Data-Aeson.html
https://www.haskell.org/

2018-08-08 62 / 74

Program

● A few basic concepts to get started

● The Haskell Tool Stack (scripts, applications and packages)

● Domain modeling with Types

● A few high-order functions that will be used again and again

● Testing with Hspec and QuickCheck

● Profiling to avoid stack overflows and space leaks

● Safe applications and packages

● Isolating and granulating side-effects

2018-08-08 63 / 74

 Side-effects
(Isolating and granulating)

● As mentioned in the previous section, all Haskell applications have a
parent code branch with IO effects. This is what allow us to create all
kind of applications (equivalence with Turing complete languages)

● Now, it’s always not the case that if you allow a sub-section of your
code to have side-effects, it should be all side-effects that should be
done.

● An example could be that we want to send sensitive data to a database,
but we don’t want our subcontractor, who handles that part of the
code, to be able to send to their servers that sensitive information

https://www.haskell.org/

2018-06-02 64 / 74

 Side-effects
(Isolating and granulating)

ssh-decorator (Python package) leaks your SSH data

https://www.haskell.org/

2018-06-02 65 / 74

 Side-effects
(Isolating and granulating)

Twitter and GitHub logs your passwords in clear text

https://www.haskell.org/

2018-06-02 66 / 74

 Side-effects
(Isolating and granulating)

granulated
 ::
 (Effects.ConsoleOutM m
 , Effects.DateTimeM m
 , Effects.SpecificWebsiteM m
)
 => m ()

main
 :: IO ()

...

main =
 granulated

https://www.haskell.org/

2018-06-02 67 / 74

 Side-effects
(Isolating and granulating)

class Monad m => ConsoleOutM m where
 putStrLn' :: String -> m ()

class Monad m => DateTimeM m where
 getCurrentTime' :: m UTCTime
 getCurrentDate :: m (Integer,Int,Int)

class Monad m => SpecificWebsiteM m where
 parseRequest' :: String -> m Request
 httpLbs' :: Request -> Manager -> m (Response L8.ByteString)
 httpNoBody' :: Request -> Manager -> m (Response ())
 tlsManager :: m Manager

https://www.haskell.org/

2018-06-02 68 / 74

 Side-effects
(Isolating and granulating)

instance ConsoleOutM IO where
 putStrLn'
 = putStrLn

instance DateTimeM IO where
 getCurrentTime'
 = getCurrentTime

 getCurrentDate
 = getCurrentTime >>= return . toGregorian . utctDay

instance SpecificWebsiteM IO where
 parseRequest' relativeUrl =
 parseRequest $ Domain.uri ++ relativeUrl

...

uri =
 "https://specificwebiste.com"

https://www.haskell.org/

2018-06-02 69 / 74

 Side-effects
(Isolating and granulating)

All effects (IO) vs granulated (Console Output DateTime Specific Website)∪ ∪

All possible effects
(IO)

SW

DT

CO

https://www.haskell.org/

2018-06-02 70 / 74

 Side-effects
(Isolating and granulating)

● So it’s very easy to argue that the design and
architecture will be enforced through the hole
application by using this approach

● It will also easy the understanding for experts and
maybe even end-users, as they can see that the
application actually does what it states

https://www.haskell.org/

2018-06-02 71 / 74

 Side-effects
(Isolating and granulating)

● And if somebody tries to modify the application, with bad
intentions, it will require major design and architecture
modifications, which can easily be spotted

● Speaking about “Privacy by Design and Default" done right !!!

Note: And the best part, is that you actually don’t have to trust
me, you just have to rely on a piece of technology which is built
on some sound Computer Science and Mathematic foundations
(ex: Using Monads to granulate side-effects, even if applications
can’t be marked as SAFE)

https://www.haskell.org/

2018-08-08 72 / 74

 Side-effects: Tasks

● Tasks 07:

– a) Limit your script so it only can print to the console

– b) Add support so it can also read input characters

Note: We are going to re-use the same approach
that we used for Tasks.03.b when creating instances
for Type-classes

https://www.haskell.org/

2018-08-08 73 / 74

Summary

● Ωα for most functional programming languages is composition both for functions as well as ADT

● Use Type (Domain) Driven Development (T/DDD) to model your business logic
– Use module encapsulation for Making Ilegal States Unrepresentable (MISU)

● HOF + Type-classes will allow you to re-use the same concepts over and over again

● It’s possible to thoroughly test (Hspec + QuickCheck) as well as profile code in order to avoid
memory issues and therefore ensure a better performance

● Usage of safe code combined with isolated/granulated effects which ensures that the
application does exactly what it’s designed for. Important in these days (EU GDPR)
– In other words, Stay Pure, Isolating Side-Effects (SPISE)

● Correctness + safety performance≫

Note: The notation , reads ≫ much greater than

http://mathworld.wolfram.com/MuchGreater.html

2018-08-08 74 / 74

Summary
Correctness + safety performance≫

There is a reason we don’t fly with these anymore ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

