
Intro Course in F#
Reliable, adj: To deliver the same result every time

2017-09-21, PROSA (PASCAL) @ Copenhagen

2017-09-21 2 / 42

Overview

● About me (very shortly)

● Matching of expectation

● Agenda:
– 17:00 |> A few basic concepts to get started

– 17:15 |> Type (Domain) Driven Development

– 18:00 |> .NET-applications and libraries

– 18:45 |> Data and TypeProviders

– 19:30 |> Concurrency and parallelism

– 20:15 |> Robust and error-free applications

– 21:00 |> Summary

Note: Slides are released under the CC BY-SA license
– Creative Commons Attribution-ShareAlike (“copyleft”)

https://creativecommons.org/licenses/by-sa/4.0/

2017-07-27 3 / 42

About me (very shortly)

● Ramón Soto Mathiesen (Spaniard + Dane)

● MSc. Computer Science DIKU/Pisa and minors in Mathematics HCØ

● CompSci @ SPISE MISU ApS
● “Stay Pure, Isolating Side-Effects” -- Michael Werk Ravnsmed dixit

● “Make Illegal States Unrepresentable” -- Yaron Minsky dixit

– Trying to solve EU GDPR with a scientific approach (Computer Science and Mathematics)

– Elm (JS due to ports) with a bit of Haskell and a bit of F# (fast prototyping)

● Elm / Haskell / TypeScript / F# / OCaml / Lisp / C++ / C# / JavaScript

● Founder of Meetup for F#unctional Copenhageners (MF#K)

● Volunteer at Coding Pirates (Captain at Valby Vigerslev Library Department)

● Blog: http://blog.stermon.com/ and Twitter: @genTauro42

https://spisemisu.com/
https://www.linkedin.com/in/michaelwerk/
https://blog.janestreet.com/effective-ml-revisited/
http://www.eugdpr.org/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
https://codingpirates.dk/
http://blog.stermon.com/
https://twitter.com/genTauro42/
https://codingpirates.dk/

2017-09-21 4 / 42

F# Open Source projects

● Previous workplace (CTO of CRM @ Delegate A/S):

– MS CRM Tools:
● http://delegateas.github.io/

– Delegate.Sandbox:
● http://delegateas.github.io/Delegate.Sandbox/

● Current workplace (SPISE MISU ApS):

– Syntactic Versioning (SynVer @ F# Community Projects)
● Mostly driven by Oskar Gewalli (@ozzymcduff)

– Puritas, isolated side-effects at compile-time in F#
● F# eXchange 2017 (talk and video)

http://delegateas.github.io/
http://delegateas.github.io/Delegate.Sandbox/
https://github.com/fsprojects/SyntacticVersioning
https://github.com/fsprojects
https://twitter.com/ozzymcduff
http://blog.stermon.com/assets/talks/2017-04-06_FSharpX_Puritas_a_journey_of_a_thousand_miles_towards_side-effect_free_code.pdf
https://skillsmatter.com/skillscasts/9754-puritas-a-journey-of-a-thousand-miles-towards-side-effect-free-code
https://github.com/fsprojects

2017-09-21 5 / 42

Matching of expectations

● What are your expectations for this course?

2017-01-31 6 / 42

Taken from a MF#K talk:
(fun _ why, where, how)→

● Last but not least, Joakim and I have committed, in
collaboration with PROSA, to provide two
introductory courses in Scala (Java people) and F#
(.NET people):

– Date still to decide (most likely February or March)

– Free for PROSA members and a fee for non-members

https://www.prosa.dk/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/

2017-09-21 7 / 42

Matching of expectations

● We expect the attendees to be able to:

– Understand a few basic concepts:
● The programming language is functional first

● Algebraic data types (Sum and Product)

● REPL, develop faster by making ad-hoc test from the IDE

● The pipe operator and readability

– Make production-ready applications or libraries

2017-09-21 8 / 42

Overview

● 17:00 |> A few basic concepts to get started

● 17:15 |> Type (Domain) Driven Development

● 18:00 |> .NET-applications and libraries

● 18:45 |> Data and TypeProviders

● 19:30 |> Concurrency and parallelism

● 20:15 |> Robust and error-free applications

● 21:00 |> Summary

2017-09-21 9 / 42

A few basic concepts to get
started: Functional first

● Functions are first class citizens
– Higher-order functions passing functions as arguments:→

[0 .. 9] |> List.map (fun x -> x + x)

– Functions tend to use curried arguments:

fun x y -> x + y or fun x -> fun y -> x + y instead of fun (x,y) -> x + y

● Everything is data and it’s immutable by default (*)
let x = 42 in x <- 42 (* FS0027: This value is not mutable *)

● The NULL concept is not used due to algebraic data types (**)

(*) - Values are used, not variables, and very few structures aren’t immutable, mainly
for performance purposes (ex: arrays)

(**) - .NET inheritance adds NULL to strings

http://fsharp.org/

2017-09-21 10 / 42

A few basic concepts to get
started: Algebraic data types

● Product types: think of it as tuples (pair, triple, ...): (42,'c')

– Records are just tuples with labels:
{ foo: 42; bar: 'c' }

● Sum types (also know as Union types): just think of it as disjoint sets (have no
element in common). The element must be in one of the assigned disjoint sets:

– A person is either a child or an adult:
type Person = Child | Adult

– Temperature is measured Celsius or Fahrenheit:
type Temperature = C of float | F of int

Note: Record types are equivalent to single case Sum types, with named fields
type Baz = { baz: int; qux: char } => type Qux = Qux of baz:int * qux:char

http://fsharp.org/

2017-09-21 11 / 42

A few basic concepts to get
started: Algebraic data types

● With ADT you will be able to compose simpler types together
in order to create more complex datastructures:

type ProductType1 = int * char (* = times)

type ProductType2 = { foo: int; bar: char } (; = times)

type SumType = Foo of int | Bar of char (| = addition)

● This is ideal for domain modeling (TDD/DDD) as it allows you
to use these mathematically constrianst to
“Make Illegal States Unrepresentable ” -- Yaron Minsky

https://blog.janestreet.com/effective-ml-revisited/
https://twitter.com/@yminsky
http://fsharp.org/

2017-09-21 12 / 42

A few basic concepts to get
started: Algebraic data types

● ADT allows you to pattern match on all branches:
type FooBar = { foo: int; bar: float }
let isFoo42 : FooBar -> bool = function
 | { foo = 42 } -> true
 | ____________ -> false

type Person = Child | Adult
let assertAge : int -> Person -> bool =
 fun age ->
 function
 | Child -> age < 18
 | Adult -> age >= 18

Note: For exhaustive pattern match, use the following compiler flag:

--warnaserror:25

http://fsharp.org/

2017-09-21 13 / 42

A few basic concepts to get
started: REPL

● Read, Evaluate, Print and Loop (REPL):

– Possible to evaluate functions, modules and types
directly from the IDE to F# interactive (interpreted code)

– This makes it easy to reason about creating smaller
pieces of logic and composing them to greater blocks

– F# script files (.FSX) are also interpreted, which means
that files are type checked before executing a single line

http://fsharp.org/

2017-09-21 14 / 42

A few basic concepts to get
started: |> and readability

● Forced indentation, just like Python, in combination
with |> makes it easy to read again and again

https://www.airpair.com/f%23/tips-n-tricks/seven-ineffective-coding-habits-many-fsharp-programmers-dont-have#visual-dishonesty
http://fsharp.org/

2017-09-21 15 / 42

Overview

● 17:00 |> A few basic concepts to get started

● 17:15 |> Type (Domain) Driven Development

● 18:00 |> .NET-applications and libraries

● 18:45 |> Data and TypeProviders

● 19:30 |> Concurrency and parallelism

● 20:15 |> Robust and error-free applications

● 21:00 |> Summary

2017-09-21 16 / 42

Type/Domain
Driven Development

Domain modelled in an ER-diagram

http://fsharp.org/

2017-09-21 17 / 42

Type/Domain
Driven Development

● It’s intuitive to see that I’m not able to make a
booking unless a plane is specified (mandatory)

● Also, I can see that I might book a hotel or rent a car,
but they are not required (optional)

● I don’t think I can get any other information out from
this diagram unless I’m also reading some text

● Which products are they offering?

http://fsharp.org/

2017-09-21 18 / 42

Type/Domain
Driven Development

open System

type Booking =
 | Basic of Plane
 | Combo of Combo
 | FullPack of Plane * Hotel * Car
and Plane = { Outbound: DateTime; Return: DateTime; Destination: City }
and Combo =
 | ``With Hotel`` of Plane * Hotel
 | ``With Car`` of Plane * Car
and Hotel = { Arrival: DateTime; Departure: DateTime; Location: City }
and Car = { From: DateTime; To: DateTime; Location: City }
and City = String

Domain modelled in F# type definitions

http://fsharp.org/

2017-09-21 19 / 42

Type/Domain
Driven Development

● I can easily see the 3 product which are offered

– Basic, Combo and Fullpack

● Combo products can be of two types

– “With Hotel” and “With Car”

http://fsharp.org/

2017-09-21 20 / 42

Type/Domain
Driven Development

● I can see some constraints:

– A Booking can either be Basic, Combo or Fullpack (disjoint union)

– With each of these products requirements (tuples):
● Basic (Plane) single→

● Combo (Plane,Hotel) pair or (Plane,Car) pair→

● Fullpack (Plane,Hotel,Car) triple→

– I can also see that a Plane will require the following information (still a tuple):
● Plane (Outbound date and time, Return date and time, Destination country)→

Notice: Domain definition and implementation are still separated with
this approach

http://fsharp.org/

2017-09-21 21 / 42

Type/Domain
Driven Development

● Tasks 01:

– Implement the domain of a Book, that could be used for a Bookstore or
a Library:

● Types: Audio, electronic and physical

● Formats:
– AAC, MP3, M4B and WAV

– EPUB, MOBI and PDF

– Hardcover and Paperback

● Info:
– Mandatory: title, authors, publisher, language, isbn10 and isbn13

– Optional: pages

http://fsharp.org/

2017-09-21 22 / 42

Overview

● 17:00 |> A few basic concepts to get started

● 17:15 |> Type (Domain) Driven Development

● 18:00 |> .NET-applications and libraries

● 18:45 |> Data and TypeProviders

● 19:30 |> Concurrency and parallelism

● 20:15 |> Robust and error-free applications

● 21:00 |> Summary

2017-09-21 23 / 42

.NET-applications and libraries

● With libs you expose some logic to be consumed by other libs or apps
module Lib =
 let someLogic () = 42
let logic = Lib.someLogic ()

● In apps you will have a main entry point function from which you will have
access to the passed arguments of compiled applications:

[<EntryPoint>]
let main : string array -> int = fun args -> (* do *) 0

● Note: Access to passed arguments when executing script files, can be
done through:

fsi.CommandLineArgs

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/functions/entry-point
http://fsharp.org/

2017-09-21 24 / 42

.NET-applications and libraries

● When working with libs, limit exposure by using modules and private
constructs. The functional way implies, in some cases, to keep Sum Types
constructors private to modules (encapsulation):

module FooBar =
 type Foo = private Bar of int
 let foo = Bar
FooBar.Bar 42
(* FS1093: The union cases … not accessible from this code location *)
FooBar.foo 42
(* > val it : FooBar.Foo = FSI_0007+FooBar+Foo *)

Remark: If libraries have interoperability with the rest of the .NET ecosystem,
define an extra .NET library, that wraps the functional library, instead of
refactoring

http://fsharp.org/

2017-09-21 25 / 42

.NET-applications and libraries

● Creating libs and apps with .NET Core 2.x:

– libs:
> dotnet new classlib -lang F# -o Library
> cd Library
> dotnet restore
> dotnet build -c Release

– apps:
> dotnet new console -lang F# -o Console
> cd Console
> dotnet restore
> dotnet build -c Release

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
http://fsharp.org/

2017-09-21 26 / 42

.NET-applications and libraries

● Tasks 02:

– Place the created domain under a module called Book and place it in your Library project

– Add to your Console.fsproj the following to point to your Library project:
 <ItemGroup>
 <Reference Include="Library">
 <HintPath>..\Library\bin\Release\netstandard2.0\Library.dll</HintPath>
 </ReferenceReference>
 </ItemGroup>

– Create an instance of a book in your app, suggestion, and just print it out to standard console output
Note: To print any complex types, just use: printfn "%A"

– Execute the application to see the output: > dotnet run

Note: In script files, you can just do any of these two approaches, to access logic from libs:
#load "Library.fs" (* source files *)

#r "bin/Release/netstandard2.0/Library.dll" (* assembly files *)

https://www.amazon.com/Quijote-Mancha-Edici%C3%B3n-Academia-Espanola/dp/8420412147/
http://fsharp.org/

2017-09-21 27 / 42

Overview

● 17:00 |> A few basic concepts to get started

● 17:15 |> Type (Domain) Driven Development

● 18:00 |> .NET-applications and libraries

● 18:45 |> Data and TypeProviders

● 19:30 |> Concurrency and parallelism

● 20:15 |> Robust and error-free applications

● 21:00 |> Summary

2017-09-21 28 / 42

Data and TypeProviders

● There are a few built-in collections (datastructures) that you will be using again and
again with:

– The following high-order functions:
● map : (('a -> 'b) -> 'a collection -> 'b collection)
● fold : (('a -> 'b -> 'a) -> 'a -> 'b collection -> 'a)
● reduce : (('a -> 'a -> 'a) -> 'a collection -> 'a)
● zip : ('a collection -> 'b collection -> ('a * 'b) collection)

– Collections:
● List: Ideal for constant additions and linear reads. Note: prepend (::) vs concatenate (@)

● Array: (vector) and multi-dimensional arrays (matrices). Constant reads and updates (mutable)

● Sequences: (lazy evaluation). Ideal for creating infinite sequences yielding new values

● Map: Ideal for storing unique keys and its corresponding value. Replacement for Dictionaries (slower)

● Set: Ideal for storing unique values

https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/collections.list-module-%5Bfsharp%5D
http://blog.stermon.com/articles/2014/03/12/fsharp-list-prepend-vs-concatenate
https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/collections.array-module-%5Bfsharp%5D
https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/collections.array2d-module-%5Bfsharp%5D
https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/collections.seq-module-%5Bfsharp%5D
https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/collections.map-module-%5Bfsharp%5D
https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/collections.set-module-%5Bfsharp%5D
http://fsharp.org/

2017-09-21 29 / 42

Data and TypeProviders

● But it’s very easy to implement well known datastructures like
trees or lazy lists:

type tree<'a> =
 | Leaf | Branch of tree<'a> * 'a * tree<'a>
type lazylist<'a> =
 | Nil | Cons of 'a * lazylist<unit -> 'a>

– ML compatibility versions:
type 'a tree =
 | Leaf | Branch of 'a tree * 'a * 'a tree
type 'a lazylist =
 | Nil | Cons of 'a * (unit -> 'a lazylist)

http://fsharp.org/

2017-09-21 30 / 42

Data and TypeProviders

● Tasks 03:

– a) Implement the infinite sequence: {0} ∪ℕ

– b) Implement the JSON value as a F# (recursive)
datastructure

● Overload ToString() to print out a JSON string
type Foo = Foo with override x.ToString() = "Foo"

http://fsharp.org/
http://json.org/

2017-09-21 31 / 42

Overview

● 17:00 |> A few basic concepts to get started

● 17:15 |> Type (Domain) Driven Development

● 18:00 |> .NET-applications and libraries

● 18:45 |> Data and TypeProviders

● 19:30 |> Concurrency and parallelism

● 20:15 |> Robust and error-free applications

● 21:00 |> Summary

2017-09-21 32 / 42

Concurrency and parallelism

● In some cases, map/reduce pattern, it’s easy to go from sequential calculations to true
parallelism with a bit of code refactoring:

[| 0 .. 10 .. (1 <<< 16) |]
|> Array.map (fun x -> x * x)

[| 0 .. 10 .. (1 <<< 16) |]
|> Array.Parallel.map (fun x -> x * x)

● When calculations not only depend on the CPU, as the example showed above, there is also
support for concurrent non-blocking asynchronous processes for when I/O (storage, network,
…) are involved in the computation:

[| "https://duckduckgo.com/"; "https://google.com"; "https://bing.com" |]
|> Array.Parallel.map asyncHttp (* Create async load, no I/O involved *)
|> Async.Parallel (* Retrieve sites concurrently *)
|> Async.RunSynchronously (* Wait for all processes to terminate *)

Note: Think of Async.Parallel and Async.RunSynchronously as fork and join

https://duckduckgo.com/
https://google.com/
https://bing.com/
http://fsharp.org/

2017-09-21 33 / 42

Concurrency and parallelism

Built-in actor model for concurrent async flows

http://fsharp.org/

2017-09-21 34 / 42

Concurrency and parallelism

● Tasks 04a:

– Implement Parallel versions of Matrix:
● Addition:

– https://en.wikipedia.org/wiki/Matrix_addition

● Multiplication:
– https://en.wikipedia.org/wiki/Matrix_multiplication

Note: Use #time in your F# scripts to measure execution time

https://en.wikipedia.org/wiki/Matrix_addition
https://en.wikipedia.org/wiki/Matrix_multiplication
http://fsharp.org/

2017-09-21 35 / 42

Concurrency and parallelism

● Tasks 04b:

– Retrieve the following wikipedia article:
● List of programming languages

– Crawl all the url to each of the programming languages and retrieve
those articles

– Decide if the article have an “Hello World” example

Note: For this task, we will be using both syncHttp and asyncHttp
from Don Symes blog post:

● Introducing F# Asynchronous Workflows

https://en.wikipedia.org/wiki/List_of_programming_languages
https://www.microsoft.com/en-us/research/people/dsyme/
https://blogs.msdn.microsoft.com/dsyme/2007/10/10/introducing-f-asynchronous-workflows/
http://fsharp.org/

2017-09-21 36 / 42

Overview

● 17:00 |> A few basic concepts to get started

● 17:15 |> Type (Domain) Driven Development

● 18:00 |> .NET-applications and libraries

● 18:45 |> Data and TypeProviders

● 19:30 |> Concurrency and parallelism

● 20:15 |> Robust and error-free applications

● 21:00 |> Summary

2017-09-21 37 / 42

Robust and error-free
applications

● In order to make applications more robust, so they don’t break unexpectedly, you
should be using types to wrap in calculated values. A know approach is to be using the
 Maybe Monad, called Option in F#, where you have Something of the assigned type
or Nothing (None). Here is an example that solves the problem of dividing by zero:

let (>>=) m f = Option.bind f m (* define operator for easy writing *)

let inc = (+) 1 >> Some
let dob = (*) 2 >> Some
let div d n = if d = 0 then None else n / d |> Some (* Avoid div by zero *)

42 |> inc >>= div 0 >>= dob (* > val it : int option = None *)
42 |> inc >>= div 1 >>= dob (* > val it : int option = Some 86 *)

Note: Notice how both code branches are equal? This is ideal to write code flows of logic

https://en.wikipedia.org/wiki/Monad_(functional_programming)#The_Maybe_monad
https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/core.option-module-%5Bfsharp%5D
http://fsharp.org/

2017-09-21 38 / 42

Robust and error-free
applications

● When using the Maybe Monad, you don’t really see what is wrong in your computation.
For that reason, there is another monad called the Either Monad, very similar to
Maybe, which allows you to add a context of failure. This monad in F# is called Choice or
very recently Result (F# 4.1). Here is the updated example from previous slide:

let bind f = function | Choice1Of2 r -> f r | Choice2Of2 l -> Choice2Of2 l
let (>>=) m f = bind f m (* define operator for easy writing *)

let inc = (+) 1 >> Choice1Of2
let dob = (*) 2 >> Choice1Of2
let div d n = if d = 0 then Choice2Of2 "Div by zero" else n / d |> Choice1Of2

42 |> inc >>= div 0 >>= dob (* > val it ... = Choice2Of2 "Div by zero" *)
42 |> inc >>= div 1 >>= dob (* > val it ... = Choice1Of2 86 *)

Note: Notice how both code branches are still equal but now we have a bit more information

https://en.wikipedia.org/wiki/Monad_(functional_programming)#The_Maybe_monad
https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/core.choice%5B%27t1,%27t2%5D-union-%5Bfsharp%5D
https://blogs.msdn.microsoft.com/dotnet/2016/07/25/a-peek-into-f-4-1/
http://fsharp.org/

2017-09-21 39 / 42

Robust and error-free
applications

● Tasks 05:

– Implement some logic in order to rate a movie with 0-5 stars

– Build into the logic so that fake reviews will not be accepted

– Calculate the average of a given movie review
● Use random values to create 25 reviews (-10 lower and 10 upper)

– Use the minimal amount of memory to store movie reviews

Note: Greater than 5 or less than 0 are fake reviews

http://fsharp.org/

2017-09-21 40 / 42

Overview

● 17:00 |> A few basic concepts to get started

● 17:15 |> Type (Domain) Driven Development

● 18:00 |> .NET-applications and libraries

● 18:45 |> Data and TypeProviders

● 19:30 |> Concurrency and parallelism

● 20:15 |> Robust and error-free applications

● 21:00 |> Summary

2017-09-21 41 / 42

Summary

● Ωα for most functional programming languages is composition

● Use modules + ADT + curried functions rather than type classes as libraries and methods

● Use Type (Domain) Driven Development (T/DDD) to model your business logic

– Use module encapsulation for Making Ilegal States Unrepresentable (MISU)

● Don’t expose mutability. The language is functional first, therefore people using your
logic will expect you to follow this approach

● Concurrency and parallelism isn’t that hard when you use the right tools ...

– “If all you have is a hammer, everything looks like a nail”

● Correctness performance≫

Note: The notation , reads ≫ much greater than

https://en.wiktionary.org/wiki/if_all_you_have_is_a_hammer,_everything_looks_like_a_nail
http://mathworld.wolfram.com/MuchGreater.html

2017-09-21 42 / 42

Summary
Correctness performance≫

There is a reason we don’t fly with these anymore ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

