
Puritas
A journey of a thousand miles towards side-effect free code

https://skillsmatter.com/conferences/8053-f-sharp-exchange-2017

2 / 42

Overview

● About me and F# Open Source projects

● What is purity and how does it perform

● Background

● Proposed solution

● Why is purity relevant for you

● Summary (+ demo, if time)

● Q & A

Note: I would love questions, but please save them to the end of the talk, lot
to say and time is mana, I mean limited

3 / 42

About me (very shortly)

● Ramón Soto Mathiesen

● MSc. Computer Science DIKU/Pisa and minors in Mathematics HCØ

● CompSci @ SPISE MISU ApS

– “If I have seen further it is by standing on the shoulders of giants”
-- Isaac Newton (Yeah Science, … Mostly mathematics)

– Elm (JS due to ports) with a bit of Haskell and a bit of F# (fast prototyping)

● Elm / Haskell / TypeScript / F# / OCaml / Lisp / C++ / C# / JavaScript

● Founder of Meetup for F#unctional Copenhageners (MF#K)

● Blog: http://blog.stermon.com/ and Twitter: @genTauro42

https://spisemisu.com/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://blog.stermon.com/
https://twitter.com/genTauro42/
https://codingpirates.dk/

4 / 42

F# Open Source projects

● Previous workplace (CTO of CRM @ Delegate A/S):

– MS CRM Tools:
● http://delegateas.github.io/

– Delegate.Sandbox:
● http://delegateas.github.io/Delegate.Sandbox/

● Current workplace (SPISE MISU ApS):

– Syntactic Versioning (SynVer @ F# Community Projects)
● Mostly driven by Oskar Gewalli (@ozzymcduff)

– Puritas, isolated side-effects at compile-time in F#

http://delegateas.github.io/
http://delegateas.github.io/Delegate.Sandbox/
https://github.com/fsprojects/SyntacticVersioning
https://github.com/fsprojects
https://twitter.com/ozzymcduff
https://github.com/fsprojects

5 / 42

What is purity

● There was an interesting blog post with regard of this topic that
surfaced after my talks was made public by #fsharpX:

– F# and Purity from Eirik Tsarpalis' blog

● It was a bit unfortunate the definition of purity that was taken from
WP at the top of that post:

– “… Purely functional programing may also be defined by forbidding
changing state and mutable data.”

● If we can’t change state, why even run it?

let main state = state (* If we can’t change state? I guess we are done *)

https://skillsmatter.com/conferences/8053-f-sharp-exchange-2017
https://eiriktsarpalis.wordpress.com/2017/03/06/f-and-purity/
https://twitter.com/eiriktsarpalis
https://en.wikipedia.org/wiki/Purely_functional_programming

6 / 42

What is purity

● I’m guessing that we should be talking about pure functions WP
instead:
– The function always evaluates to the same result value given the same

arguments

– Evaluation does not cause any observable side effect or output, such as
mutation of mutable objects or output to I/O devices

● OK, so we change state and we are still pure:

let rec main state = function | 0u → state | n main (→ state + 1) (n - 1u)

● So in purely functional programing, state changes, but in a sound way

https://en.wikipedia.org/wiki/Pure_function

7 / 42

What is purity

● Be careful to not become to pedantic, still from pure functions WP:

– The result value need not depend on all (or any) of the argument values.
However, it must depend on nothing other than the argument values

● So this is not pure?

let foo () = 42

let bar x = foo () + x (* besides x, the result depends on foo *)

● What about curried arguments?

let baz x y = x + y
let qux = fun x fun y x + y (* nested lambda depends on parent *)→ →

https://en.wikipedia.org/wiki/Pure_function

8 / 42

What is purity

● The previous pure functions (foo, bar, baz, qux) can
be mapped directly to -calculusλ , which is
mathematically pure.

● Therefore, the result of combining pure functions,
would still be considered pure
– Save this “bit of information” for later

9 / 42

What is purity

● Lets recap:

– Functions always evaluates to the same output value given the
same input

– Evaluation does not cause any side effect, such as mutation of
mutable objects or output to I/O devices

– Functions can be mapped directly to -calculusλ , which is
mathematically pure.

– The result of combining pure functions, would still be considered
pure

10 / 42

and how does it perform

● Taken from SO (Academia):

– Pippenger [1996], “Pure Versus Impure Lisp", comparing pure
Lisp (strict evaluation, not lazy) to one that can mutate data,
establishes that is the best you can do is Ω(n log n) in the pure
when problems are O(n) in the impure version

– Bird, Jones and De Moor [1997], “More haste, less speed: Lazy
versus eager evaluation”, demonstrate that the problem
constructed by Pippenger can be solved in a lazy functional
language in O(n)

http://stackoverflow.com/questions/1990464/efficiency-of-purely-functional-programming/1990580#1990580
http://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/Pure%20Versus%20Impure%20LISP.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/BirdJonesDeMoor1997More.pdf

11 / 42

and how does it perform

● Taken from SO: (In Practice)

– Okasaki [1996] and Okasaki [1998], “Purely Functional
Data Structures”, many algorithms can be implemented
in a pure functional language with the same efficiency as
in a language with mutable data structures.

● My blog: F# - Puresort of lists (Okasaki)

http://stackoverflow.com/questions/1990464/efficiency-of-purely-functional-programming/1990580#1990580
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
https://www.amazon.com/dp/0521663504/
http://blog.stermon.com/articles/2015/12/27/fsharp-puresort-of-lists-okasaki

12 / 42

and how does it perform

● Taken from SO: (In Practice)

– SPJ and Marlow [1999], “Stretching the storage
manager: weak pointers and stable names in Haskell”,
due to referential transparency, even when using memo
and unsafe IO, will not change pure behavior

memo :: (a b) (a b)→ → → and unsafePerformIO :: IO a a→

fib :: Int Int→
fib = memo ufib

ufib :: Int Int→
ufib 0 = 1
ufib 1 = 1
ufib n = fib (n – 1) + fib (n – 2)

http://stackoverflow.com/questions/1990464/efficiency-of-purely-functional-programming/1990580#1990580
https://www.microsoft.com/en-us/research/wp-content/uploads/1999/09/stretching.pdf
https://en.wikipedia.org/wiki/Referential_transparency

13 / 42

and how does it perform

● Taken from SO: (In Practice)

– Remark: To ensure that impurity can be hidden under
referential transparency, the following must be added on
top of all your files so that side-effects must be handled
through Monads to avoid “Launching the missiles”:

{-# LANGUAGE Safe #-}

http://stackoverflow.com/questions/1990464/efficiency-of-purely-functional-programming/1990580#1990580
https://en.wikipedia.org/wiki/Referential_transparency
https://youtu.be/06x8Wf2r2Mc?t=1247

14 / 42

Background

● A few years ago I created Delegate.Sandbox in order to provide side-effect
free code in F#

● I mainly did it to troll Haskell people. MF#K is a cross-functional Meetup
Group and haskellers can be a bit annoying with their purity sometimes …

● On a serious note, the reason is that most developers don’t really know
which I/O side-effects are executed in their applications

● The library is built on top of the AppDomain Class which allows to
Run Partially Trusted Code in a Sandbox (.NET)

● Talk at MF#K (2015-09-29): I/O side-effects safe computations in F#

https://delegateas.github.io/Delegate.Sandbox/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
https://msdn.microsoft.com/en-us/library/system.appdomain(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/bb763046(v=vs.110).aspx
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://blog.stermon.com/assets/talks/2015-09-25_MFK-Delegate.Sandbox_IOside-effects_safe_computations_in_Fsharp.pdf
http://www.delegate.dk/

15 / 42

Background

● Delegate.Sandbox Pros:

– Guaranteed side-effect free code

– Idiomatic syntax:

https://delegateas.github.io/Delegate.Sandbox/

16 / 42

Background

● Delegate.Sandbox Cons:

– Tainted expressions (Unsafe) cause run-time errors

– Not thread-safe (race conditions)

– Post-Build F# script (need code to be compiled first)

– Reason, the F# Compiler Services (FCS) only supported
untyped syntax trees back then

https://fsharp.github.io/FSharp.Compiler.Service/
https://fsharp.github.io/FSharp.Compiler.Service/untypedtree.html
https://delegateas.github.io/Delegate.Sandbox/

17 / 42

Background

18 / 42

Proposed solution

● Thanks to Microsoft and the F# Community, FCS now also
supports typed expression trees (*)

● So lets recall: “Therefore, the result of combining pure
functions, would still be considered pure”

● Now that we can type-check our code with FCS, we should
be able to reason about if code is pure (or not)

(*) - Almost, at least Sum Types aren’t supported (yet?)
type FooBar = Foo of int | Bar of float (* not working *)

https://www.microsoft.com/
http://c4fsharp.net/
https://fsharp.github.io/FSharp.Compiler.Service/
https://fsharp.github.io/FSharp.Compiler.Service/typedtree.html
https://fsharp.github.io/FSharp.Compiler.Service/
https://github.com/fsharp/FSharp.Compiler.Service/issues/717

19 / 42

Proposed solution

● There is actually a POC in the F# Compiler to check if an
expression has effects (flag: --test:HasEffect)

● And recently I found out, from a tweet, that there was another
project trying to separate pure from impure code:

– PolyglotSymposium.Sandline

● Both experiments are based on typed expression trees as well as
my project, SpiseMisu.Puritas, but what makes my project
different from theirs is that I mark pure branches with a type while
they rely on marking idiomatic code as pure or not (true/false)

https://twitter.com/craigstuntz/status/766328658633949184
https://github.com/Microsoft/visualfsharp/blob/master/src/fsharp/Optimizer.fs#L1229-L1293
https://twitter.com/keithtpinson/status/844200545585938432
https://github.com/PolyglotSymposium/sandline
https://fsharp.github.io/FSharp.Compiler.Service/typedtree.html

20 / 42

Proposed solution

● The reason I’m adding a type is because F# is an eager (strict) impure
functional language and that way I can distinguish branches at
compile time (F# is what it is and we can’t/shouldn’t change that)

● Therefore, my approach is to add ad-hoc pure branches to our
impure code

let foo : int Pure = purify 42

● Just think of it as with the lazy keyword, where we are able to add
ad-hoc lazy branches to our strict code

let bar : int Lazy = lazy 42

21 / 42

Proposed solution

● So now, we just need to find all our code branches that return pure
code. This is actually very easy to do as F# (.NET) has a canonical
type signatures:

let foo : int list = [42]

let bar : List<System.Int32> = [42]

● Therefore we can just look for all signatures that comply with:

((...) ... SpiseMisu.Puritas.Pure) (ends with)

SpiseMisu.Puritas.Pure<… <...>> (starts with)

● Even though we can type-check, this will not be enough ...

22 / 42

Proposed solution

● … as we will have to taint code expressions that
don’t comply with the following recursive
parent/child code branch logic:

Code branches Parent Impure Parent Pure Parent Tainted

Child Impure Impure Tainted Tainted

Child Pure Impure Pure Tainted

Child Tainted Tainted Tainted Tainted

23 / 42

Proposed solution

● Therefore our taint-checker marks the following branches as valid:

– Impure Impure (regular F# code is perfectly valid)→

– Impure Pure (pure code consumed by impure is also OK)→

– Pure Pure (used when defining pure libs and/or APIs)→

● All the other cases will be marked as invalid (tainted)

● Invalid code will bubble up to the top, tainting the hole
expression as invalid. Just think of taint like poison in Tony Hoare
Communicating Sequential Processes (CSP)

https://www.cs.ox.ac.uk/people/tony.hoare/
http://www.usingcsp.com/

24 / 42

Proposed solution

● Like I mentioned before, my project differs from the
others in that I’m able to mark the following code as
valid, while they would mark it as invalid (true/false):

 | BasicPatterns.NewArray (_,exprs) ->
 (* FSharpType * FSharpExpr list *)

 let msg = "BasicPatterns.NewArray"

 let tag' =
 (* Reason: Arrays are mutable, therefore impure *)
 tag
 |> taint msg range Tag.Impure
 |> taint msg range (taintExprs debug (tag) exprs)

 debug mexpr msg tag' tag

 tag'

25 / 42

Proposed solution

● We only consider pure code signatures that comply with:

((...) ... SpiseMisu.Puritas.Pure) (ends with)

SpiseMisu.Puritas.Pure<… <...>> (starts with)

● That means that F# Core is impure as well

purify (1 + 2) (* is actually impure, so “Computer Says No” *)

● So how do you code without basic arithmetic operators?

● Well F# to the rescue. We just expand our pure type with some operator
overloading and we are good to go:

purify 1 + purify 2

26 / 42

Proposed solution

● So what are we looking at?
#r @"SpiseMisu.Puritas.dll"
open SpiseMisu.Puritas

let sum : int Pure -> int Pure -> int Pure = fun x y -> x + y
let result = sum (purify 42) (purify 42)

let inc : (int Pure -> int Pure) Pure =
 purify (fun x -> x + purify 1)
let dec : (int Pure -> int Pure) Pure =
 purify (fun x -> x - purify 1)
let add : (int Pure -> int Pure -> int Pure) Pure =
 purify (fun x y -> x + y)

let foo = dec <*> purify 42
let bar = inc >*> dec <*> purify 42
let baz = purify 42 |*> (inc <*< dec)
let qux = purify 42 </ add /> purify 42

let rec fold f acc = function
 | Nil -> acc
 | Cons(x,xs) -> fold f (cons (f x) xs) xs
let map f xs = fold f nil xs

let foobar = cons (purify 42) nil |> map (fun x -> x + x)

27 / 42

Proposed solution

● It’s pretty idiomatic right?

● From/to (purify/value) and list support (cons/nil and |Cons|Nil|)

● In order to wrap/unwrap pure functions/values, I added a few extra
operators (apply <*>, left/right composition >*> and <*<, pipe |*>, …)

● I also added a few functions (memo, concurrent, delay) with
referential transparency to achieve better performance

● Since F# Core is impure, we will need boolean arithmetic operators as
we can’t overload them:

== (EQ), /= (NEQ) >- (G), -< (L), => (GE), =< (LE)

https://en.wikipedia.org/wiki/Referential_transparency

28 / 42

Proposed solution

● Fibonacci (+ memo version):
#r @"SpiseMisu.Puritas.dll"
open SpiseMisu.Puritas

let zero = purify 0
let one = purify 1
let two = purify 2

let rec fib : int Pure -> int Pure =
 fun n ->
 if zero == n then one
 elif one == n then one
 else
 (n-one |> fib) + (n-two |> fib)
(* Real: 00:00:08.959, CPU: 00:00:09.132, GC gen0: 2312, gen1: 0 *)
Array.init 36 (purify >> fib >> value)

let rec ufib : int Pure -> int Pure =
 fun n ->
 if zero == n then one
 elif one == n then one
 else
 (n-one |> fibMemo) + (n-two |> fibMemo)
and fibMemo : int Pure -> int Pure = memo ufib
(* Real: 00:00:00.000, CPU: 00:00:00.000, GC gen0: 0, gen1: 0 *)
Array.init 36 (purify >> fibMemo >> value)

29 / 42

Proposed solution

● Lets recap (SpiseMisu.Puritas):

– A library:
● SpiseMisu.Puritas.dll (~100 lines of code)

● Provides ad-hoc pure branches to our impure code (think of it like with lazy)

– A taint-checker:
● SpiseMisu.Puritas.TaintChecker.fsx (~1000 lines of code)

● Only depending on F# Core and FCS (HAL 9000, I mean @ncave, Fable much?)

● Tainting expressions at compile-time and errors are prettified with Markdown syntax

– Idiomatic, except for boolean arithmetic operators

– Acceptable performance due to referential transparency (memo, ...)

https://fsharp.github.io/FSharp.Compiler.Service/
https://en.wikipedia.org/wiki/Referential_transparency
https://github.com/ncave

30 / 42

Why is purity relevant for you

● Purity it’s not just academic mumbo jumbo

● Privacy-by-design, get used to it as General Data Protection Regulation (GDPR)
arrives next year:

– Doom-day: 2018-05-28

● Easiest way to comply with this approach is by isolating your side-effect. Languages
supporting this at the moment are: Haskell, COQ, Idris, PureScript, Elm among
others and hopefully soon F#, due to SpiseMisu.Puritas

● I know, the people from the UK are just thinking: “Why should we care?”, well:

– The future of UK data protection law post-Brexit
● “The GDPR will come into effect before the UK leaves the European Union”

● “The UK will still have GDPR-like rules after it leaves the European Union”

http://www.eugdpr.org/
https://www.linkedin.com/pulse/future-uk-data-protection-law-post-brexit-phil-lee
http://www.eugdpr.org/

31 / 42

Why is purity relevant for you

http://www.eugdpr.org/
https://www.version2.dk/artikel/mega-svipser-cpr-numre-skatteoplysninger-frit-tilgaengelige-paa-skats-hjemmeside-1074352
http://www.dr.dk/nyheder/penge/private-oplysninger-er-ude-efter-stort-laek-hos-novo-nordisk

32 / 42

Why is purity relevant for you

● We recently had two cases where sensitive was leaked through websites (both cases
could easily be avoided by using something like Hardy Jones elm-proxy):

– SKAT (Danish Ministry of Taxation)
● Some people when login in could choose other peoples profiles, presented in a list, like admin mode

– Novo Nordisk (Denmark's Top 2 greatest company, turnover/revenue: 107.927 mDKK)
● 95.000 job applicants data (name, phone, e-mail, …) was published to their main website (human error)

● What if it was next year, both blamed their software provider? (Sanctions)

– Fines in the size of 10/20 mEUR or 2%/4% annual worldwide turnover (whichever is greater)

Note: turnover (UK)/revenue (US) reference to the amount of money a company
generates without paying attention to expenses or any other liabilities

https://github.com/joneshf
http://package.elm-lang.org/packages/joneshf/elm-proxy/1.0.0
http://skat.dk/en/SKAT.aspx?oid=3099&lang=us
http://www.novonordisk.com/
http://www.business.dk/oekonomi/grafik-her-er-danmarks-1000-stoerste-virksomheder
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation#Sanctions
http://www.eugdpr.org/

33 / 42

Why is purity relevant for you

34 / 42

Why is purity relevant for you

● Are you willing to deliver software from Doom-day next year?

– How are you going to convince your customers that you are doing everything
to ensure that no unwanted side-effects and hereby data-leaks will occur?

● Lets remove the blame-game and the say a lot but do nothing from
the equation and focus on solving the real problem, with science ofc

● By tainting unwanted side-effects at compile-time, no system will
be deployed to production with vulnerabilities

● You will just need to request pure code through signatures files from
your contractors or software providers (next slide)

https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/signatures
http://www.eugdpr.org/

35 / 42

Why is purity relevant for you

vs

“Don't be evil” enforced by code !!!

namespace EvilCorp
 module BusinessLogic =
 (* Connect to 3rd party and leak data, perfectly fine *)
 val foo : int -> int
 (* Create folder and log sensitive data, fine as well *)
 val bar : float -> float

namespace CantBeEvilCorpAnymore
 module BusinessLogic =
 (* Connect to 3rd party and leak data, Computer Says No *)
 val foo : int Pure -> int Pure
 (* Create folder and log sensitive data, Computer Says No *)
 val bar : float Pure -> float Pure

http://www.eugdpr.org/

36 / 42

Why is purity relevant for you

● Just think of it in Simon P. Jones (SPJ) terminology:

– Isolate side-effects to avoid “Launching the missiles”

– Isolate side-effects to avoid “Leaking data”

● By enforcing purity, the “Volkswagen emissions scandal”
(dieselgate), would never have been possible as the
Governments could just require that car manufactures
software, complied with their signatures files

https://www.microsoft.com/en-us/research/people/simonpj/
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal
https://docs.microsoft.com/en-us/dotnet/articles/fsharp/language-reference/signatures
https://www.microsoft.com/en-us/research/people/simonpj/

37 / 42

So … Don Vito Syme

38 / 42

Can I haz pure keyword so that

39 / 42

Can I haz pure keyword so that

● The following code ...

let foo : int Pure = purify 42

● … becomes

#nowarn “46”

let foo : int Pure = pure 42

40 / 42

F# can join the Mad Tea Party

41 / 42

Summary (+ demo, if time)

● SpiseMisu.Puritas provides ad-hoc side-effect free code at compile-time

● Privacy-by-design, General Data Protection Regulation (GDPR): Doom-day: 2018-05-28

● Dank memes aside, I will make a formal request for the reserved keyword pure at
F# Language and Core Library Suggestions
– I will post link on Twitter, please vote if you agree that it should be part of F# Core

● If @ncave pulls it off, F# could be the first to provide purity at both BE and FE !!!

● “Stay Pure, Isolating Side-Effects” (SPISE MISU ApS, it was all part of the Masterplan)
– Michael Werk Ravnsmed dixit

● Finally, I would like to thank Joakim Ahnfelt-Rønne (@Continuational) for his reviews, his initial
“counter” examples and specially showing that the library was pretty much useless without the
possibility to lift impure values into pure functions (ex: load an int from a file, increment and save)

● Any time left to “Show some code” and demo?

http://www.eugdpr.org/
https://github.com/fsharp/fslang-suggestions/
https://github.com/ncave
https://www.linkedin.com/in/michaelwerk/
https://twitter.com/continuational

42 / 42

Q & A

Only “old” Spaniards will get this

https://www.youtube.com/watch?v=o2mU_Thgcgg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

