
Functional Programming Languages
why, where, how

MF#K January 2017 Meetup
@Prosa 2017-01-31



2017-01-31 2 / 24

Overview

● About me

● (fun _  why, where, how)→

● Summary

● Q & A



2017-01-31 3 / 24

About me (very shortly)

● Ramón Soto Mathiesen

● MSc. Computer Science DIKU/Pisa and minors in Mathematics HCØ

● CompSci @ SPISE MISU ApS

– “If I have seen further it is by standing on the shoulders of giants”
-- Isaac Newton (Yeah Science, Bitch … Mostly mathematics)

– Elm (JS due to ports) with a bit of Haskell and a bit of F# (fast prototyping)

● Elm / Haskell / TypeScript / F# / OCaml / Lisp / C++ / C# / JavaScript

● Blog: http://blog.stermon.com/ 

https://spisemisu.com/
http://blog.stermon.com/


2017-01-31 4 / 24

(fun _  why, where, how)→

● In this second talk we will put emphasis on the fun 
part of programming languages

● You will all, mostly all, be coding functionally but 
without using a computer

● So given recent events, we are going to help build 
a ...



2017-01-31 5 / 24

(fun _  why, where, how)→



2017-01-31 6 / 24

(fun _  why, where, how)→

● In order to build a firewall, we will need to have wall 
pieces of the same color (“segregation”) with:

– L × W × H: 1.6 cm × 4.8 cm × 4.75 cm (≈ 4.92 cm top dots)

● Lets keep all those “bad packages” away



2017-01-31 7 / 24

(fun _  why, where, how)→

● As mentioned before, most of you will be having fun 
while a very few will … Therefore we are dividing you 
up in two groups:

– Team Functional

– Team Imperative (Claes, Jannick and Oscar you go here)



2017-01-31 8 / 24

Team Functional

● Will be working with immutable data structures (*)

(*) - Please don’t try to break them 



2017-01-31 9 / 24

Team Imperative

● Will be working with … Good luck, you will need it !!!



2017-01-31 10 / 24

(fun _  why, where, how)→

● Joakim and myself will be the final “Acceptance Test”
– We seem to have issues with our small hands, that’s why 

our ruler is smaller than yours …

● Before you handle us a piece of wall, you will need to 
perform your own tests. There is only one ruler (to 
rule them all), so both teams will have to share it
– I’m guessing Team Imperative is going to use it the most



2017-01-31 11 / 24

(fun _  why, where, how)→

(we will use 15 – 30 minutes on the task)

Reminder:
Wall pieces of the same color with:

L × W × H: 1.6 cm × 4.8 cm × 4.75 cm (≈ 4.92 cm top dots)



2017-01-31 12 / 24

(fun _  why, where, how)→

/Nostradamus mode on

● What we have seen is that a lot of fun people could 
work with the same data, slicing colors and sizes, at 
the same time (concurrency/parallelism) while each 
imperative person had to sit with her/his small 
bucket of Play-Doh as a mixture of colors would be 
impossible to revert ... 



2017-01-31 13 / 24

(fun _  why, where, how)→

/Nostradamus mode on

● Given the nature of the immutable data-blocks provided to 
the fun people, it was easy to combine them to the 
requested wall size while still providing the same 
robustness and immutability as the lesser blocks

● On the other hand, imperative people had to do everything 
on their own getting a much worse result, even though it 
was skilled people trying to provide some craftsmanship



2017-01-31 14 / 24

(fun _  why, where, how)→

/Nostradamus mode on

● Some of Team Imperative suffered that our “Acceptance Test" sadly produced 
some awful side-effects on your data structure (a wall become a sphere)

– It wasn't meant to be a cunt move (maybe it was) but we were only trying to show what 
happens in real life (*)

(*) Happened to me last week when having to work on some JavaScript 
Interoping with Elm:

function foobar(xs){

    xs.reverse()          // changes xs array

    xs.slice(0).reverse() // clones xs and then reverse

}



2017-01-31 15 / 24

(fun _  why, where, how)→

● It's important to understand that “Play-Doh” might 
give you more freedom to do what you want but less 
reliability …

– Reliable, adj: To deliver the same result every time.



2017-01-31 16 / 24

(fun _  why, where, how)→



2017-01-31 17 / 24

(fun _  why, where, how)→



2017-01-31 18 / 24

(fun _  why, where, how)→



2017-01-31 19 / 24

(fun _  why, where, how)→

● While “LEGO” still gives you artistic freedom, but 
with a few sound constraints that help you create 
reliable work every-single-time

– Reliable, adj: To deliver the same result every time.



2017-01-31 20 / 24

(fun _  why, where, how)→



2017-01-31 21 / 24

(fun _  why, where, how)→



2017-01-31 22 / 24

Summary

● We need reliability in our software solutions and this is 
something that is built-in to fun languages. I know you 
get more “freedom” with imperative languages 
(Example: C or JS), but with that comes a lot of 
responsibility and lets face it, most developers can't 
handle that.
– Reliable, adj: To deliver the same result every time.

● Finally, so who paid for the firewall? Sadly, I did :(



2017-01-31 23 / 24

Summary

● Last but not least, Joakim and I have committed, in 
collaboration with PROSA, to provide two 
introductory courses in Scala (Java people) and F# 
(.NET people):

– Date still to decide (most likely February or March)

– Free for PROSA members and a fee for non-members



2017-01-31 24 / 24

Q & A

Any Questions?

(and let’s go for beers @ Ørsted Ølbar)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

