
Type Driven Development (TDD) and
Idiomatic Data Structures

SweNUG November 2016 Meetup
@FooCafé 2016-11-23

2016-11-23 2 / 35

Overview

● About me

● Test vs Type Driven Development (TDD)

● Idiomatic Data Structures

● Show me some code

● Q & A

2016-11-23 3 / 35

About me (very shortly)

● Ramón Soto Mathiesen

● MSc. Computer Science DIKU/Pisa and minors in Mathematics HCØ

● CompSci @ SPISE MISU ApS

– “If I have seen further it is by standing on the shoulders of giants”
-- Isaac Newton (Yeah Science, Bitch … Mostly mathematics)

– Elm with a bit of Haskell and a bit of F# (fast prototyping)

● Elm / Haskell / TypeScript / F# / OCaml / Lisp / C++ / C# / JavaScript

● Blog: http://blog.stermon.com/

https://spisemisu.com/
http://blog.stermon.com/

2016-11-23 4 / 35

Test Driven Development

● Software approach where you:

– Before implementing any piece of code, you first define
test cases

– These test cases are added to code as stubbed methods
which will initially all fail

– Once the code stubs are implemented correctly, all test
cases will then succeed

– Test cases must map 1:1 with Use cases

2016-11-23 5 / 35

Test Driven Development

● Normally, this is the kind of approach we use to see …

● Business experts produce a lot of documents combined
with diagrams to specify requirements for the application

● Afterwards, the produced documents are given to
developers (most of them have no knowledge of the
domain) and they will implement requirements as
software

2016-11-23 6 / 35

Test Driven Development
(Pros/Cons)

● Pros:

– We involve Business experts as they are able to express themselves in plain English

● Cons:

– Produced documents are not made for computers but for humans

– Therefore, once software changes (and it will) due to Software Development Life
Cycle, the produced documents will not always be updated (*)

(*) For example, Medicinal industry always update the documentation as
it’s a legal requirement, which makes development very slow ...

2016-11-23 7 / 35

Test Driven Development
(Main issue)

● As there is no binding between text and software, there might be
misunderstanding on how to implement requirements as code

● Based on the complexity of some organizations and software
providers (levels of hierarchy) before you get the right answer you
might have gone through several layers.

– Do you remember what happened back in primary school when the
teacher started by saying something to one kid and it had to go through
all the kids in a chain (whispering). Did the initial message sound
anything like the final? Not really right?

2016-11-23 8 / 35

Test Driven Development
(WTF did u just say?)

2016-11-23 9 / 35

Type (Domain) Driven Development

● So what if you were able to invite Business experts into our Realm …

● This is an approach already used by Jane-Street, where stockbrokers are paired
with developers to teach each other their domains

– https://www.janestreet.com/technology/
● “It’s no secret that we’re big believers in functional programming, and use OCaml, a statically typed

functional language, as our primary development platform. Jane Street’s technology group is small by
design, which means we need to maximize the productivity of each person we hire. We believe
functional programming helps us do that. But it’s not about productivity alone: programming in a rich
and expressive language like OCaml is just more fun.”

● They use OCaml

Note: Actually F# started out as an .NET implementation of that language. Now they are
still similar but very different languages

https://www.janestreet.com/technology/

2016-11-23 10 / 35

Type Driven Development
(OCaml @ Jane Street … if you Zoom)

2016-11-23 11 / 35

Type Driven Development
(Office 365 Saturday Denmark)

● Let’s look into an example I showed at the
Office 365 Saturday Denmark (OSDK) talk:

– It’s based on a Travel Agency app.

– I will not tell what the app does, lets look firstly into an
ER (Entity–relationship model) digram

– Afterwards we will look into some domain modeling

http://www.spsevents.org/city/Copenhagen/Copenhagen2016/_layouts/15/SPSEvents/Speakers/Session.aspx?SpeakerId=1365&ID=52&source=http%3A%2F%2Fwww.spsevents.org%2Fcity%2FCopenhagen%2FCopenhagen2016%2F_layouts%2F15%2FSPSEvents%2FSpeakers%2FSpeaker.aspx%3FID%3D1365%26IsDlg%3D1

2016-11-23 12 / 35

Type Driven Development
(Entity–relationship model - ER)

2016-11-23 13 / 35

Type Driven Development
(Entity–relationship model - ER)

● It’s intuitive to see that I’m not able to make a
booking unless a plane is specified (mandatory)

● Also, I can see that I might book a hotel or rent a
car, but they are not required (optional)

● I don’t think I can get any other information out
from this diagram unless I’m also reading some text

– Which products are they offering?

2016-11-23 14 / 35

Type Driven Development
(Domain)

open System

type Booking =
 | Basic of Plane
 | Combo of Combo
 | FullPack of Plane * Hotel * Car
and Plane = { Outbound: DateTime; Return: DateTime; Destination: Country }
and Combo =
 | ``With Hotel`` of Plane * Hotel
 | ``With Car`` of Plane * Car
and Hotel = { Arrival: DateTime; Departure: DateTime; Location: Country }
and Car = { From: DateTime; To: DateTime; Location: Country }
and Country = { Name: String; ``ISO 3166-1``: char * char }

2016-11-23 15 / 35

Type Driven Development
(Domain)

● I can easily see the 3 product which are offered

– Basic, Combo and Fullpack

● Combo products can be of two types

– “With Hotel” and “With Car”

● I can see some constraints:

– A Booking can either be Basic, Combo or Fullpack (disjoint union)

– With each of these products requirements (tuples):
● Basic => (Plane) single

● Combo => (Plane,Hotel) pair or (Plane,Car) pair

● Fullpack => (Plane,Hotel,Car) triple

– I can also see that a Plane will require the following information (still tuples):
● Plane => (Outbound date and time, Return date and time, Destination country)

2016-11-23 16 / 35

Type Driven Development
(Domain)

2016-11-23 17 / 35

Type Driven Development
(OCaml/F#)

● Well we are actually looking into code but it really look like plain English
right?

● So we are actually using a bit of mathematics to provide some domain
constraints (Algebraic data types):

– Product Types: think of it as the tuples I mentioned before
Note: records types are also tuples, but they just have labels

– Sum Types: Think of it as disjoint sets

● So what is great about using mathematics to make constraints? Well we are
actually able to Make Illegal States Unrepresentable

Note: I found an issue with my initial domain, which I fixed for this talk

https://blogs.janestreet.com/effective-ml-revisited/

2016-11-23 18 / 35

Type Driven Development
(Fixed)

open System

type Booking =
 | Basic of Plane
 | Combo of Combo
 | FullPack of Plane * Hotel * Car
and Plane = { Outbound: DateTime; Return: DateTime; Destination: City }
and Combo =
 | ``With Hotel`` of Plane * Hotel
 | ``With Car`` of Plane * Car
and Hotel = { Arrival: DateTime; Departure: DateTime; Location: City }
and Car = { From: DateTime; To: DateTime; Location: City }
and City = String

2016-11-23 19 / 35

Type Driven Development
(Round 2)

● Be careful with statements like:

– Yaron Minsky: “Make Illegal States Unrepresentable”

– Richard Feldman: “Making Impossible States Impossible”

Note: I’m not dishing neither Yaron or Richard as I’m a
huge fan of them both

● As it is not always possible to ensure mathematical
correctness by using the ordinary TDD approach ...

https://twitter.com/yminsky
https://blogs.janestreet.com/effective-ml-revisited/
https://twitter.com/rtfeldman
https://www.youtube.com/watch?v=IcgmSRJHu_8

2016-11-23 20 / 35

Type Driven Development
(Round 2, ASCII Art for the win)

 +: State
 #: Transition

 +--------------------------+
 | TurnedOn (On Switch) |
 +--------------------------+
 |ʌ
 | v
 #----------# #-----------#
 | TurnOn | | TurnOff |
 #----------# #-----------#
 |ʌ
 | v
 +--------------------------+
 | Turnedoff (Off Switch) |
 +--------------------------+

2016-11-23 21 / 35

Type Driven Development
(Round 2)

module WhatYouNormallySee =
 type State = On | Off

 (* Bug due to lack of testing
 Note: ALWAYS use FsCheck, F# implementation of Haskells QuickCheck *)
 let transition = function
 | On -> On
 | Off -> On

 let transitionFixed = function
 | On -> Off
 | Off -> On

2016-11-23 22 / 35

Type Driven Development
(Round 2)

● How to handle State transitions in a type safe manner as we are doing with States
(States + State transitions = State machine)

● Well firstly we will need to introduce the following three simple concepts:

– Phantom Types: Are parametrised types whose parameters do not all appear on the right-
hand side of its definition

Example: type 'a Foo = Bar

– Function Types: Define a function signature as a type
Example (for the identity function): type 'a Id = 'a -> 'a

– Not accessible Sum Type Case Constructors: By hiding the underlying case constructors for
a given sum type, you can ensure that only specific parts of the code can instantiate your
type

Example: type FooBar = private | Foo of int | Bar of float

2016-11-23 23 / 35

Type Driven Development
(Round 2)

module Light =
 type 'a Switch = private | State

 and TurnedOn = On Switch
 and TurnedOff = Off Switch

 and On = On
 and Off = Off

 and TurnOn = TurnedOff -> TurnedOn
 and TurnOff = TurnedOn -> TurnedOff

 module Switch =
 let private initHelper = State
 let private turnHelper = fun _ -> State

 let initOn : TurnedOn = initHelper
 let initOff : TurnedOff = initHelper

 let turnOn : TurnOn = turnHelper
 let turnOff : TurnOff = turnHelper

 module Output =
 (* Expensive call cos of .NET Type Reflection *)
 let state (x:'a Switch) =
 match typedefof<'a> with
 | t when t = typedefof<On> -> "on"
 | t when t = typedefof<Off> -> "off"
 | _________________________ -> "invalid type"

2016-11-23 24 / 35

Type Driven Development
(Round 2)

open Light

let on =
 Switch.initOff
 |> Switch.turnOn

let off =
 on
 |> Switch.turnOff

let error =
 off
 // |> Switch.turnOff
 (* error FS0001: Type mismatch. Expecting a
 TurnedOff -> 'a
 but given a
 TurnOff
 The type 'Off' does not match the type 'On' *)

// on = off
(* error FS0001: Type mismatch. Expecting a
 TurnedOn
 but given a
 TurnedOff
 The type 'On' does not match the type 'Off' *)

on |> Output.state
off |> Output.state

2016-11-23 25 / 35

Idiomatic Data Structures
(OO data structure in F#)

type ResizeArray<'T> = System.Collections.Generic.List<'T>

type EventStore() =
 let eventList =
 new ResizeArray<String * ScoutEvent>()

 member this.Save(name, events) =
 events |> List.iter (fun e -> eventList.Add(name, e))

 member this.Get() =
 eventList

2016-11-23 26 / 35

Idiomatic Data Structures
(OO data structure in F#)

● The main issue by introducing OO data structures
in F# is that you have to think with a different
mindset of what is expected.

● Let me explain by looking into MSDN, where we can
see that ResizeArray is just a type abbreviation for a
generic .NET list

https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/collections.resizearray%5B't%5D-type-abbreviation-%5Bfsharp%5D

2016-11-23 27 / 35

Idiomatic Data Structures
(OO data structure in F#)

● Let’s use the data structure as we normally would:

● We get the following output:

● Which is non-deterministic as well as an incorrect result

let xs = new ResizeArray<int>()

Array.Parallel.init 1000 (fun i -> xs.Add i) |> ignore
xs |> Seq.reduce(fun x y -> x + y)

> val it : int = 991456
> val it : int = 1490956
> val it : int = 1990456

2016-11-23 28 / 35

Idiomatic Data Structures
(OO data structure in F#)

● So why is this happening? Well if you are used to work with the .NET
platform, you might as well (if you actually read the documentation on
MSDN) have seen the following text on the bottom of almost every
Class definition, under the Thread Safety section:

– “Public static (Shared in Visual Basic) members of this type are thread safe. Any
instance members are not guaranteed to be thread safe”

● The main point here is that .NET collections are not immutable and
therefore don’t fit well with the functional paradigm that F# is
mainly built-on, even though it has support for other paradigms as
imperative and OO

2016-11-23 29 / 35

Idiomatic Data Structures
(Data structures in F# done right)

module Immutable =
 type 'a iarray = private | T of 'a array with
 override ia.ToString() =
 ia |> function | T xs -> xs |> sprintf "%A"

 module Array =
 let init n f =
 Array.Parallel.init n f |> T
 let map f (T xs) =
 xs |> Array.Parallel.map f |> T
 let iter f (T xs) =
 xs |> Array.iter f
 let reduce f (T xs) =
 xs |> Array.reduce f
 let fold init f (T xs) =
 xs |> Array.fold f init
 let length (T xs) = xs |> Array.length
 let at i (T xs as ixs) =
 if i < 0 || i >= (length ixs) then
 failwith (sprintf "index: %i is out of boundries." i)
 else
 xs.[i]
 let append (T xs) (T ys) =
 Array.append xs ys |> T

 module Extra =
 let add x (T xs) =
 Array.append xs [| x |] |> T
 let pop (T xs as ixs) = length ixs |> function
 | 0 -> failwith "the array is empty."
 | 1 -> [| |] |> T
 | n -> xs.[0 .. n-2] |> T

2016-11-23 30 / 35

Idiomatic Data Structures
(Data structures in F# done right)

● As mentioned previously in these slides, we can use Not accessible Sum Type
Case Constructors (*) to hide the underlying case constructors for a given sum
type, to ensure that only specific parts of the code can instantiate a type:

type 'a iarray = private | T of 'a array

● Combined with that I’m never exposing the underlying and mutable array,
therefore, as I don’t allow any external piece of code to instantiate my type
iarray unless it’s by using the init function, I can therefore argue that my data
structure is sound to be used as an immutable F# data structure as the native
built-in would be used

(*) Languages like Haskell and Elm achieve the same abstraction by not exposing
the type(s) from their module(s)

2016-11-23 31 / 35

Idiomatic Data Structures
(ResizeArray vs iarray)

● Producing the following output

let foobar =
 Array.Parallel.init 1000 id
 |> Array.reduce(fun x y -> x + y)

let foo =
 let xs = new ResizeArray<int>()

 Array.Parallel.init 1000 (fun i -> xs.Add i) |> ignore
 xs |> Seq.reduce(fun x y -> x + y)

let bar =
 let xs = Immutable.Array.init 0 id

 Array.Parallel.init 1000 (fun i -> xs |> Immutable.Array.Extra.add i)
 |> Array.reduce(fun x y -> Immutable.Array.append x y)
 |> Immutable.Array.reduce (fun x y -> x + y)

> val foobar : int = 499500
> val foo : int = 304641
> val bar : int = 499500

2016-11-23 32 / 35

What if … we were able to develop
careful but fast? Think about that ...

● “No bug has ever been found in the ‘released for flight’ versions of that code.”
-- Henry Spencer (henry@spsystems.net)

● “Now, a great deal of stuff that goes on in the aerospace industry should not be emulated
by anyone, and is often self destructive. Most of you have probably read various popular
articles about the development process that produces the space shuttle software, and while
some people might think that the world would be better if all software developers
were that ‘careful’, the truth is that we would be decades behind where we are now, with
no PC’s and no public internet if everything was developed at that snail’s pace.”
 -- John Carmack (lead dev for Wolfenstein 3D, Doom, Quake among others)

Source:

– http://number-none.com/blow/blog/programming/2014/09/26/carmack-on-inlined-code.html

mailto:henry@spsystems.net
http://number-none.com/blow/blog/programming/2014/09/26/carmack-on-inlined-code.html

2016-11-23 33 / 35

Show me some code … NOT :(

● Remarks:

“Some of the classes and class elements in the System.Net.WebSockets namespace are
supported on Windows 7, Windows Vista SP2, and Windows Server 2008. However, the
only public implementations of client and server WebSockets are supported on
Windows 8 and Windows Server 2012. The class elements in the
System.Net.WebSockets namespace that are supported on Windows 7, Windows Vista
SP2, and Windows Server 2008 are abstract class elements. This allows an application
developer to inherit and extend these abstract class classes and class elements with an
actual implementation of client WebSockets.”

● Source:

– MSDN ClientWebSocket Class

– Xamarin ClientWebSocket Class

https://msdn.microsoft.com/library/system.net.websockets.clientwebsocket(v=vs.110).aspx
https://developer.xamarin.com/api/type/System.Net.WebSockets.ClientWebSocket/

2016-11-23 34 / 35

Summary

● Test vs Type Driven Development (TDD)

– Make Illegal States Unrepresentable (MISU)
Note: Including State Machines

● Idiomatic Data Structures

– OO data structures in F# don’t really fit well the functional paradigm

● What if … we were able to develop careful but fast?

● Show me some code … NOT :(

● Q & A

2016-11-23 35 / 35

Q & A

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

