
MF#K - Introduction to F#
ERFA meeting @ PFA 2015-02-27

Mødegruppe for Ƒunktionelle Københavnere
(MF#K)

Overview

• About me

• Matching of expectations

• Agenda

– 09:00 |> Short introduction to F# (sales pitch)

– 09:20 |> Demo: F# and LivNet (FK64: Settlement of remuneration)

– 10:00 |> Summary: U want more?

About me (very shortly)

• Ramón Soto Mathiesen

• MSc. Computer Science from DIKU (Minors in Mathematics)

• Managing Specialist |> CTO of CRM Department @ Delegate A/S

– ER-modeling, WSDL, OData (REST API)

• F# / C# / JavaScript / C++: Delegate A/S @ GitHub

• Blog: http://blog.stermon.com/

http://delegateas.github.io/
http://blog.stermon.com/

Matching of expectations

• What are you expectations for this introduction to F#?

Matching of expectations

• Ƒunctional Copenhageners Meetup Group will try to get more
and more software projects to be based on functional
programming languages. We mainly focus on F# and Haskell,
but other functional programming languages like Scala, Lisp,
Erlang, Clojure, OCaml, etc. are more than welcome.

• We expect that attendees to this introduction to F#, will get
inspired to use the language in the future

Short introduction to F# (sales pitch) - Buzzwords

• less code, error-free projects, only one code base, big data,
parallelism, concurrency, asynchronous processes

Short introduction to F# (sales pitch) - F# - What is it?

• Is an open-source, strongly typed, multi-paradigm
programming language encompassing functional, imperative
and object-oriented designed by Don Syme (MS Research
Cambridge UK) and maintained by Microsoft, F# Software
Foundation and open contributors

• It’s a mature language that is part of Visual Studio and the .NET
Framework

• Loved by the very talented who contribute to it for free with
sometimes very usable projects:

– Special mention to (among others):

• Tomas Petricek (TomASP.NET)

• Scott Wlaschin (F# for fun and profit)

http://tomasp.net/
http://fsharpforfunandprofit.com/

Short introduction to F# (sales pitch) - F# - Why use it?

• Conciseness

• Convenience

• Correctness

• Concurrency

• Completeness

Short introduction to F# (sales pitch) - F# - Why use it?

• Conciseness:

– F# is not cluttered up with coding noise such as curly brackets,
semicolons and so on

– You almost never have to specify the type of an object, thanks to a
powerful type inference system.

– And, compared with C#, it generally takes fewer lines of code to solve
the same problem

let swap (x,y) = y,x
let foo = swap(42,0)
let bar = swap("42","0")

> val swap : x:'a * y:'b -> 'b * 'a
> val foo : int * int = (0, 42)
> val bar : string * string = ("0", "42")

Short introduction to F# (sales pitch) - F# - Why use it?

• Convenience:

– Many common programming tasks are much simpler in F#. This
includes things like creating and using complex type definitions,
doing list processing, comparison and equality, state machines, and
much more

– And because functions are first class objects, it is very easy to create
powerful and reusable code by creating functions that have other
functions as parameters, or that combine existing functions to
create new functionality

let f g x = g x
f (fun x -> x * x) 42

> val f : g:('a -> 'b) -> x:'a -> 'b
> val it : int= 1764

Short introduction to F# (sales pitch) - F# - Why use it?

• Correctness:

– F# has a powerful type system which prevents many common errors
such as null reference exceptions.

– Values are immutable by default, which prevents a large class of
errors

– In addition, you can often encode business logic using the type
system itself in such a way that it is actually impossible to write
incorrect code or mix up units of measure, greatly reducing the need
for unit tests

[<Measure>] type DKK
[<Measure>] type USD
let rate : float<USD/DKK> = 0.2<USD/DKK>
let usd2dkk (amount: float<USD>) = amount / rate
type OpportunityDK = { Customer : string; Amount : float<DKK> }
type OpportunityUS = { Customer : string; Amount : float<USD> }
type Opportunities = | DK of OpportunityDK | US of OpportunityUS
let odk0 = { OpportunityDK.Customer = "Skillshouse A/S"; Amount = 42.<DKK> }
let odk1 = { OpportunityDK.Customer = "Microsoft Danmark ApS"; Amount = 42.<DKK> }
let ous2 = { OpportunityUS.Customer = "Microsoft Redmond HQ"; Amount = 42.<USD> }
[DK(odk0); DK(odk1); US(ous2);]
|> List.map(fun x -> match x with | DK y -> y.Amount | US y -> usd2dkk y.Amount)
|> List.reduce(+)

Short introduction to F# (sales pitch) - F# - Why use it?

• Concurrency:

– F# has a number of built-in libraries to help when more than one
thing at a time is happening. Asynchronous programming is very
easy, as is parallelism. F# also has a built-in actor model, and
excellent support for event handling and functional reactive
programming

– And of course, because data structures are immutable by default,
sharing state and avoiding locks is much easier

[|0 .. 10 .. (1 <<< 16)|]
|> Array.map(fun x -> x * x)
[|0 .. 10 .. (1 <<< 16)|]
|> Array.Parallel.map(fun x -> x * x)

Short introduction to F# (sales pitch) - F# - Why use it?

• Completeness:

– Of course, F# is part of the .NET ecosystem, which gives you
seamless access to all the third party .NET libraries and tools.

– Finally, it is well integrated with Visual Studio, which means you get
a great IDE with IntelliSense support, a debugger, and many plug-ins
for unit tests, source control, and other development tasks

– Although it is a functional language at heart, F# does support other
styles which are not 100% pure, which makes it much easier to
interact with the non-pure world of web sites, databases, other
applications, and so on. In particular, F# is designed as a hybrid
functional/OO language, so it can do virtually everything that C# can
do except …

open System
let ts () = DateTime.Now.ToString("o") // ISO-8601
let ts' () = (ts ()).Replace(":", String.Empty) // Filename safe
let cw (s:string) = Console.WriteLine(s)
let cew (s:string) = Console.Error.WriteLine(s)

Short introduction to F# (sales pitch) - F# - Why use it? (funny)

Remark: string in F# can be null as well (primitive .NET types)

Short introduction to F# (sales pitch) - F# - Why use it? (Business)

• Time to Market:

– Easy prototyping (REPL: Read-Evaluate-Print-Loop)

– Run as .NET code

• Efficiency:

– JIT compilation (as C#)

– Easy to implement parallelism

• Complexity:

– Flexible language

– Type inference

• Correctness:

– Advanced types

– Close to math

Demo: F# and LivNet (FK64: Settlement of remuneration)

• After a short demonstration of LivNet by Daniel Olsen we
decided that it would make sense to showcase an example how
to post-process a CSV file generated by the system

• We have chosen the following script (kørsel):

– FK64: Afregning af vederlag

– Task to be shown:

1. Use the Fsharp.Data TypeProvider to infer types from .CSV file based
on a sample of the script (CsvProvider)

2. Load data from the script FK64: Afregning af vederlag

3. Remove entries without a Bank

4. Normalize amount by multiplying with 0.001

5. Show amount in a graph (FSharp.Charting) combined with Value date.

Remark: All the above in only less than 50 lines of well-written code

http://fsharp.github.io/FSharp.Data/
http://fsharp.github.io/FSharp.Charting/

U want more?

• Code will be available @ dao@pfa.dk

• Slides will be available @ dao@pfa.dk

• Sign up @ MF#K for:

– More fun

– Hands-on:

• Phil Trelford: Hands On Fparsec (2015-03-17)

– Talks:

• In the pipeline talks about: Erlang, Haskell, Rust, ...

– Up next: Erlang in general and Haskell with CUDA (May month)

• MF#K would like to thank our sponsor(s):

mailto:dao@pfa.dk
mailto:dao@pfa.dk
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/events/220117295/

